

Thesis for the degree

Doctor of Philosophy

Submitted to the Scientific Council of the
Weizmann Institute of Science
Rehovot, Israel

עבודת גמר (תזה) לתואר

דוקטור לפילוסופיה

מוגשת למועצה המדעית של
מכון ויצמן למדע
רחובות, ישראל

By

Roni Zohar

מאת

רוני זהר

תנועה כדלת ללמידה מושגים פיזיקליים -

שילוב 'פדגוגיה מעוגנת גופ' בהוראה

**Movements As a Door for Learning Physics Concepts -
Integrating Embodied Pedagogy in Teaching**

Advisors:

מנחים :

Prof. Bat-Sheva Eylon

פרופ' בת שבע אלון

Prof. Dor Abrahamson

פרופ' דור אברהםסון

4.2018

אייר תשע"ח

תקציר

כיצד ניתן לחזק את הזיקה בין מושגים מדעיים הנלמדים בבית הספר לבין מושגים ספונטניים המתפתחים באופן טבעי? ככלומר מהו הקשר בין ידע נאיבי לבין ידע מובנה, כגון מושגים במכניקה הנלמדים במסגרת לימוד הฟיזיקה? מחוקרים רבים מראים כי תלמידים הלומדים מכניקה בכל הרמות חווים קושי בהבנת המושגים, ולעתים קרובות ממשיגים אותם באופן שאינו בהלימה עם המושגים המקוריים (McDermott, 1999). דרכי ההוראה המסורתניות לא נתנות מענה לקושי זה עבור תלמידים רבים, נושא זה מעסיק חוקרים רבים בהוראת הฟיזיקה אשר בוחנים אסטרטגיות שונות להתמודדות עם קושי זה, למשל על ידי חיפוש דרכים ללמידה פעילה המאפשרים לחבר בין ידע נאיבי לידע מדעי (Melzer, 2012). הנחת יסוד של עבודה זו היא שהתנסות גופנית יכולה לשמש כמשאב ייחודי המאפשר למידה של רעיונות מורכבים בתחום הฟיזיקה באמצעות קישורם להתנסות היומיומית של גוף האדם עם הסביבה. מחוקרים מצבאים על תפקידה החשובה של אינטואיציה מעוגנת גוף באינטראקציה עם הסביבה ובפרטן בעיות (Smith & DiSessa, 1993), פרדיגמה במדעי הקוגניציה הרואה בגוף ובמוח יחידה אחת (Clement, 1982; McCloskey, 1983), (Thelen, Schöner, Scheier, & Smith, 2001) מוצבאים על הפוטנציאלי של גישה מעוגנת גוף ללמידה. בעבודה זו פיתחנו גישת הוראה - "פדגוגיה מעוגנת גוף" למידת פיזיקה (זהר, Bagno, Eylon, 2015 ; 2015 ; Zohar, Bagno, Eylon, 2015). החזון הוא לפתח ערכזים למידה לסטודנטים מליימודי פיזיקה או חווים קשיים במהלך הלמידה. כמו כן, חקרו את הפוטנציאלי של גישת ההוראה בחוששים מליימודי פיזיקה או חווים קשיים במהלך הלמידה. כמו כן, חקרו את הפוטנציאלי של גישת ההוראה בלימוד מושגים פיזיקליים מורכבים. אנו מתארים שני חקרים מוקהה של תלמידות תיכון, תלמדו בגישה שפיתחנו מושגים מורכבים בפיזיקה, שיווי משקל ומחירות זוויתית. בתהליך הלמידה כולם ניכרה תרומה של גישת ההוראה להבנת המושגים. בפרט, מצאנו שבעבודות הסיכום שהציגו התלמידות באה ידי ביתוי הבנה מושגית עמוקה, יצירתיות ועומק פילוסופי ורגשי (זהר, Bagno, Eylon, Abrahamson, 2017 ; 2018 ; Zohar, Bagno, Eylon, Abrahamson, 2017). אנו מנסים לאפיין את התהליכיים שהובילו לתוצאות אלו, בעזרת ניתוח איקוטני של האופנויות השונות בתהליכי הלמידה (Multimodal Analysis).

לרקע כל הורך לדוקטורט, מדענית מכון ויצמן למדע זכתה בתחרות בין-לאומית המשלבת מדע ומחול.

Abstract

How can we strengthen the affinity between scientific concepts learned in school and intuitive concepts that develop spontaneously? For example, what is the connection between naïve knowledge and scientific knowledge such as mechanics concepts taught in physics lessons? Research shows that students learning mechanics concepts at all levels experience difficulties in understanding these concepts and often conceptualize them differently from experts (McDermott, 1999). For many students, traditional teaching practices do not address this difficulty. This issue occupied many researchers of physics teaching who explored different strategies for coping with this difficulty such as finding means for active learning that will enable learners to link their naïve knowledge and scientific knowledge (Meltzer 2012). The underlying assumption of this research is that actual physical experience can be used as a unique resource for learning complex concepts in physics by associating them with daily body activities. Research indicates the significant role of embodied intuition in the interaction with the surroundings and in problem-solving (Clement, 1982; McCloskey, 1983; Smith & DiSessa, 1993).

Theories and research based on 'Embodiment', a cognitive science paradigm that regards the brain and body as one unit (Thelen, Schoner, Scheier & Smith, 2001), suggest the potential contribution of 'Embodiment' to learning. In this research we developed an instructional approach (Zohar, Bagno, Eylon, 2015; Zohar, 2015), 'Embodied Pedagogy', for learning physics that coheres with this paradigm. Our vision is to open new learning channels both for learners who specialize in physics as well as for those who are intimidated by physics or experience difficulties during studying.

In this research we explored, through two case studies, the potential of 'Embodied Pedagogy' for learning in high-school two complex physics concepts, 'balance' and 'angular velocity'. In the entire learning process, the contribution of the instructional approach to students' learning and understanding the concepts was evident. Moreover, in summative projects students expressed a deep conceptual understanding, creativity as well as philosophical and affective depth (Zohar, Bagno, Eylon, Abrahamson, 2018; Zohar, 2017). We try to characterize the processes that led to these results using a qualitative multimodal analysis of the learning process.