
Computer Science Concepts
in Scratch

(Scratch 1.4)

Version 1.0

Michal Armoni and Moti Ben-Ari

c© 2013 by Michal Armoni, Moti Ben-Ari, Weizmann
Institute of Science.

This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/

or send a letter to Creative Commons, 444 Castro Street,
Suite 900, Mountain View, California, 94041, USA.

Contents

Introduction 7

1 First Steps 15

Example 1: Our first animation in Scratch 16

Example 2: A sequence of motion instructions . . 23

Example 3: Starting an animation from a fixed place 31

Example 4: Continuous motion 36

2 Multiple Sprites 49

Example 1: An animation with two sprites 49

Additional material on Scratch: Mouse modes . . 59

Additional material on Scratch: Changing costumes 63

3 Short Scripts, Long Runs 67

Example 1: Infinite Run 68

Example 2: infinite run with a condition 74

3

4

Example 3: Multiple scripts 80

4 Communications Between Sprites 89

Example 1: The opening kickoff 89

5 On the Dance Floor—Repeated Run Again 105

Example 1: A simple dance—repeated run for a
fixed number of times 106

Example 2: Until we meet again—conditional re-
peated runs 113

Example 3: Dancing on and on—repeated runs
within repeated runs 118

Example 4: Becoming a choreographer—controlling
the dance . 125

Additional material on Scratch: Changing costumes 130

Additional material on Scratch: Adding background
sounds . 137

6 Remembering Things—Variables 149

Example 1: The growing and shrinking dragon—
changing the size of a sprite 149

Example 2: The size of the dragon changes to the
value of a variable 154

Example 3: Adding buttons to the game 164

5

7 It Depends—Conditional Run 179

Example 1: Walking through a maze 181

Example 2: Pac-Man doesn’t give up—restarting
the game . 195

Example 3: Pac-Man turns green—more on condi-
tional run . 197

Example 4: To complete the game, let Pac-Man eat
bananas . 210

Example 5: Random numbers 214

Additional material on Scratch: Brightness and color220

8 Numbers 233

Example 1: Oranges for the prince 233

Example 2: Changing the rules of the game—a
surprising button 252

Example 3: Arranging the oranges in equal rows . 265

9 Lists—Remembering Complex Information 289

Example 1: What do you want to order? 289

10 Concurrent Run 339

Example 1: Educated rabbits 340

Example 2: All together now 350

Example 3: All together now, but at different speeds352

6

11 Digging Further into Computer Science and Scratch379

Example 1: Collision-avoidance radar 380

Example 2: Guiding a missile is like a dog chasing
a cat . 387

Example 3: Choreography—the depth dimension
on the stage 392

Looking Back 405

Introduction

This book will familiarize you with the Scratch visual
programming environment. Scratch users have many
different goals: some will build games for entertainment,
while others will construct simulations of the natural
world to use in teaching and learning. The Scratch system
can be used by people with different skills: designing a
game or a film, creating images, or programming. The
authors of this book focus on a specific goal: using Scratch
to encourage learning of computer science. Of course, the
skills and knowledge that you learn from this book will
enable you to use Scratch for any purpose you wish, but
we emphasize understanding important concepts and
ideas of computer science, and not, for example, those
needed to construct a film or a game.

7

8 Introduction

Why computer science?

Computers have entered into all phases of our life: most
films that we watch have computer-generated special
effects. Modern “gadgets” contain computers: music
players, cell phones, cameras. Most of our money exists
not as coins and bills but as data stored in the banks’
computers. Doctors send us to be tested by machines that
are controlled by computers and, in many cases, even the
results of the tests are images that are generated by
computers. Every time we travel—by airplane, train or
even by car—we entrust our safety to computers.

People who build computerized systems, especially those
who develop the software or programs for the computers,
are responsible for translating our wishes and
requirements into a form that can be understood by
computers, which are—after all—persistent and speedy
but basically rather stupid. Developing software is a
fascinating and challenging occupation because of the
need to deal with two such different types of creatures:
people and computers. We hope that familiarity with
software development in Scratch will bring you closer to
the field of computer science and perhaps even encourage
you to consider studying computer science in the future.

Introduction 9

Why Scratch?

Almost everyone knows how to use a computer. We use
them for surfing the internet (email, downloading music
and videos, chatting, shopping), for writing documents
and for playing games. Aren’t you curious to learn how
these amazing applications are built? Well, they are built as
computer programs, which are written in programming
languages that a computer can understand and run.
Unfortunately, programs like internet browsers and word
processors are very complex—they can have millions of
instructions in a programming language—and the
languages themselves were designed for professional
programmers and are difficult to learn. Here is where
Scratch comes to our rescue. Scratch is easy to learn and
you can build programs for a computer (or, as we say, to
program the computer) immediately when you start to work
with Scratch. Furthermore, Scratch supports the use of
graphics, animation and sound without requiring that you
understand the technical details.

Don’t let the colorful presentation of Scratch fool you! It is
not a computer game. Scratch is a real software
development environment, and experience with Scratch
will provide you a glimpse of what it is like to program a
computer professionally. It is lots of fun working with
Scratch, and the programs you develop can be exciting
games or interesting simulations, but during the process of
creating these programs you will face the same challenges

10 Introduction

faced by a professional programmer: What is the computer
capable of doing? How can our wishes and needs be
translated into instructions that the computer can
understand and run? How are errors diagnosed and
corrected? We are certain that studying Scratch in depth
will be a fascinating experience.

The structure of the book

You don’t learn how to program a computer by reading a
book but by writing programs. A book can only guide you
and provide explanations. Therefore, this book is
structured as a collection of examples and tasks. Each
chapter teaches a new concept (or perhaps a group of
related concepts), but the concept is always introduced in
order to solve a specific problem: counting oranges,
animating dancing images, building a computer game, and
so on. Each chapter starts with a simple task, but as soon
as we solve a task, we add new aspects to the task, where
the new aspect asks for an extension to the existing task or
changes a requirement to make it more complex. Each task
in the sequence of tasks will require that you use some
new concept of computer science and either a new
construct of Scratch or a different way of using one that
you already know.

Introduction 11

We suggest that you work on each task according to the
following guidelines:

• Read the task.

• Think how you would solve the task and write your
solution in English.

• Consider if you already know enough constructs in
Scratch in order to translate your solution in a
Scratch project and try to do so.

• If not, look for new Scratch constructs. Try using the
new construct.

For each task, the book provides a very detailed explanation
of how to solve it. In addition, you can download full
solutions as Scratch projects that you can examine and run.
Please try to solve tasks by yourself without looking at the
explanations, but if you are having difficulty, read the
explanations and then look at the solutions. Even if you
solved the task without difficulty, we suggest that you read
the explanations because they emphasize concepts of
computer science that played a role in the solution.

A number of the tasks are designated as optional and
some sections have Additional material in the title. Some
of these concern advanced concepts that you may wish to
leave for later once you have more experience with Scratch.
Most of them, however, concern topics that are not central

12 Introduction

to learning important concepts of computer science, such
as drawing images or changing the background image.

To facilitate using the book as a reference, framed text
summarizes the material in each section. A frame with a
bold border:

New concept:

is used for computer science concepts that are not limited to
the Scratch environment, while a frame with a normal
border:

New construct in Scratch:

is used for programming constructs in Scratch.

A word to the learner

The more effort you make to solve the tasks by yourself
before reading the explanations, the more successful your
learning will be. But, if you encounter a difficulty, don’t
hesitate to read the explanations and to examine the solutions.
As you work through the tasks in the book, you will come

Introduction 13

to understand better the spirit of Scratch and you will find
that it becomes easier to learn new concepts and
constructs.

Please don’t give up whenever you cannot solve a problem.
Solving tasks and translating the solutions into a
programming language are difficult and demand that you
invest a lot of effort. Everyone who learns to program
encounters such difficulties and it takes a while to become
proficient. Look upon each task as a challenge that you
have face and overcome. Rest assured that the more
experience you gain, the more your confidence in your
ability will increase.

A word to the teacher

There is no point in asking us: “Am I allowed to . . . ?”
because the answer is always “yes.” While we believe that
we have chosen an effective order in which to present the
concepts, as well as the appropriate tasks with which to
illustrate them, feel free to change the order of
presentation, skip chapters, propose other tasks, or change
the learning process in any way you please. Furthermore,
it is clear that each student will progress at a different rate.
There is no point in slowing down students who wish to
forge ahead in order to investigate new topics or to build
other projects.

The only thing that we would like to insist upon is that

14 Introduction

you not compromise on the goals of the book. We ask that
you ensure that students really are learning the basic
concepts of computer science like control structures, data
handling, communications, and so on. Students can find it
very seductive to spend all their time drawing images,
changing graphics effects and composing music. While
design is important, Scratch has no advantages over other
software for design. We prefer to look upon graphics
design as a way of motivating students and simplifying
the programming process, but this should not come at the
expense of achieving our goal: bringing computer science
closer to the students.

Chapter 1

First Steps

Scratch is a visual programming environment that we will
use to become acquainted with concepts of computer
science. Scratch does this by enabling you to create
computerized animations. Initially, the Scratch environment
will be unfamiliar and we will invest effort in learning the
details of how to use it. Very quickly you will find that you
have mastered the environment and we will progress from
creating very simple animations to more complex ones.
Even the complex animations will be built step-by-step to
help you learn the new concepts and constructs. Scratch is
not used in professional software development, but the
concepts that will learn as you create projects in Scratch
will appear again and again when you proceed to study
more advanced computer science.

Example 1

15

16 Chapter 1

Our first animation in Scratch
Our first encounter with Scratch will be with a very simple
animation that we have prepared for you. Open the
Scratch environment by double-clicking on the
orange-and-white cat icon on the desktop. The Scratch
window will open. At the top of the window you will see
four words: File, Edit, Share, Help. Click on File to open a
menu of commands and then click on the line Open.... You
will see a list of folders that appears beneath the folder
Projects. Click on the folder ch01 that is associated with this
first chapter, and then click the button OK. Within the list,
click on project move-10-steps that contains the first
example and click again on OK.

Program file name: move-10-steps

A description of the Scratch window

The Scratch window is displayed below. On the right side
you will see a large white square. This is the stage upon
which the figures of the animations will move. The figures
are called sprites. In this example there is one sprite, the
Scratch cat. In the top left corner of the stage, we have
arranged to display the position and direction of the cat
sprite who is standing at the center of the stage at a point
numbered (0, 0) and facing to the right in the direction 90◦

(90 degrees).

First Steps 17

The stage measures 480 units wide by 360 units high. The
positions of the center and the four corners of the stage are
shown in Figure 1.1.

Below the right corner of the stage, the current position of
the mouse pointer is displayed, for example,
x : 100 y : −50. Move the mouse pointer around without
looking at the display and try to guess where it is; then
look at the corner display and see if you were
approximately correct. Drag the cat with your mouse and
see how his position changes. Before continuing, return the
cat to the center of the stage, as near as you can to (0, 0).

18 Chapter 1

y y

y y

x : −240, y : −180 x : 240, y : −180

x : −240, y : 180 x : 240, y : 180

x-axis� -

y
-
a
x
i
s

?

6

Figure 1.1: x- and y-positions on the state

First Steps 19

Running an animation

Click on the green flag that appears above the right corner
of the stage.

? What happens?

The cat has changed its position and moved a little bit to
the right. You can see this in the display of the position
(the top left corner of the stage): on the x-axis the cat has
now moved to position 10, while before its position was
zero. The position on the y-axis has not changed nor has
the direction.

Click again on the green flag.

? What happens now?

Again, the cat has changed its position and moved 10 steps
to the right. Clicking repeatedly on the green flag will
cause the same action to take place again and again: a
movement of the cat 10 steps to the right on the x-axis.
This will continue until the cat reaches the edge of the
stage and (almost) disappears. If you continue to click the
green flag, nothing will happen.

Scripts

Look at the long gray panel that appears to the left of the
stage in the center of the Scratch window. This panel
contains the script that is run in order to move the cat.

20 Chapter 1

Every sprite in Scratch has a set of scripts that describe its
behavior. Sprites do not act as they wish, but only
according to clear instructions in the scripts that we write
for them.

As you might expect, the script for the cat in this project is
very simple:

It consists of two blocks containing instructions. The first

means that the following

instructions will be run when you click the green flag with
the mouse. The second means that the

sprite (the cat) must move 10 units on the stage in the
direction it is facing.

New concept: Instruction, running a program
An instruction causes a sprite to perform an ac-
tion. Instructions must be clear and unambigu-
ous.
When a program is run the actions specified in
the instructions are carried out.

First Steps 21

The instruction move to there is ambiguous because we
don’t know where “there” is. Such an instruction could not
be part of a program. Instead, the instructions have to be
very clear like move 10 steps in direction 90 .

The yellow box that appears
in the script area contains a comment, which
is a description of the script in English.
Comments are very important because
they help the reader understand the Scratch
program. While you understand what a
script does when you write it, a week or two
later, you might not remember it so well. If someone else
tries to work with your scripts, she will be glad to see the
scripts explained in comments.

22 Chapter 1

New construct in Scratch: block, script, com-
ment

A block is a colored graphical element that is
used to construct programs in Scratch. Each
block is labeled with an instruction that causes
the computer to perform an action when the
block is run.
A script is a structured collection of blocks that
specifies the behavior of a sprite.
A program in Scratch consists of the definition
of all the sprites (how they look) and all the
scripts of each sprite (how they behave).
A comment is a textual description of what a
script is supposed to do.

Comments are not part of the program! That is,
Scratch runs the instructions in the blocks of the
scripts and ignores the comments. You can
write a comment that says “the cat moves left,”
but if you use a block that instructs the cat to
move right, it will move right. Comments are
very helpful when trying to understand a
program, but you must always remember that a
comment may not correctly describe what the
instructions are doing.

Example 2

First Steps 23

A sequence of motion instructions
Let us make the cat’s behavior more complex by having it
make more than one movement when the script is run.

Task 1

Construct an animation that causes the cat to
move 100 steps and then turn 90 degrees
counterclockwise each time it is run (by clicking
the green flag).

Program file name: move-steps-turn-left

Changing values in instructions

First, let us increase the length of the movement that the
cat makes from 10 steps to 100 steps. The instruction
move...steps is a general instruction that does not tell us
how many steps to move. In order to actually use the
instruction in a script, we must create a specific instruction
that specifies the number of steps to move. The script for
the previous example used the block ,

which contains a window with the value 10. We want to
change this to 100 so that the specific instruction will cause
the cat to move 100 steps. Click on the window and it will
change to a dark blue color. You can now type in the
number 100, which will replace the number 10. Click the

24 Chapter 1

green flag above the stage and you will see that the cat
moves 100 steps. Use the mouse to move the cat to another
place on the stage; click again on the green flag and see
what happens.

? What happens if we enter a negative number −100 into
the window in the block?

Negative numbers cause the movement to be made in the
opposite direction from positive numbers. If the sprite is
pointing right, a move by a positive number causes it to go
to the right, while a move by a negative number causes it
to go to the left. If the sprite is pointing left, the movement
is reversed: positive to the left and negative to the right. To
check that this is true, enter different values in the window
of the move block, click the green flag, and look at the
values in the display in the upper left corner of the stage.
In the next section we will learn how to change the
direction of a sprite and you should check again that
“positive” and “negative” movements are relative to the
direction of the sprite.

Before continuing, change the value in the move block
back to positive 100.

First Steps 25

New concept: general and specific instruc-
tions
A general instruction becomes a specific in-
struction when specific values are added to the
instruction. These values turn an ambiguous
instruction that cannot be run into an unam-
biguous instruction that can be run.

New construct in Scratch: move

The instruction causes the

sprite to move from its current position by the
number of steps given within the window. One
step is one unit on the stage. If the value is posi-
tive, the movement is in the direction the sprite
is facing; otherwise, it is in the opposite direc-
tion.

Changing the direction of a sprite

We now add an additional aspect to the behavior of the cat:
changing its direction. Look at the long gray panel on the
left of the Scratch window. You will see a large collection of
blocks that we can use when building scripts. We will
change the direction of the cat using the blue block

26 Chapter 1

, which is labeled with the

instruction turn and an arrow that is curved in the
counterclockwise direction. (This is the third block from
the top). To insert this block into the script, drag it and
drop it underneath the move block.

Drag-and-drop means do the following actions:
(1) move your mouse until the mouse pointer
points to the block; (2) press the left mouse
button and hold it; (3) without releasing the
button, move your mouse in the direction of the
script in the middle panel; this is called dragging
because you will see the block ”dragged” along
with the mouse pointer; (4) when you reach the
point where you want to insert the block,
release the left mouse button and the icon for
the block will ”drop” into place. A bulge in the
bottom of a block will fit into a notch in the top
of the block below it.

Scratch makes sure that you can only drop a block in
places where it is permitted. A white line will appear at
these places as you drag the block. In this script, the white
line will appear when you position the mouse above the
move block, as well as when you position it below the
block, because the turn block is permitted in both places.
Move the mouse until the white line appears below the
move block and drop the turn block there.

First Steps 27

The turn instruction is also a general instruction that has to
have a value entered into its window in order to make it a
specific instruction that can be run. Change the number
within the window of the turn block to 90. This instruction
tells the cat to turn in a counterclockwise direction by 90◦.

Directions on the stage

Directions on the Scratch stage are measured around a
circle like on a clock, so we can talk about clockwise
movement and counterclockwise movement. Unlike a clock
which divides its directions into 12 units (hours) and 60
units (minutes or seconds), directions in Scratch are
divided into 360 units called degrees and indicated by a
small circle ◦. Figure 1.2 shows the degrees associated with
eight arrows that start at the center of the stage and point
horizontally, vertically and diagonally.

The 360 degrees of the circle go from −180 degrees to +180
degrees. The direction 90 degrees (written 90◦) points
right, 0◦ points up, −90◦ points left and 180◦ (or −180◦)
points down. Given a direction D◦, the opposite direction
is D◦ − 180◦ or D◦ + 180◦, so, for example, the opposite of
45◦ is 45◦ − 190◦ = −135◦, and the opposite of 0◦ can be
written as 180◦ or −180◦.

28 Chapter 1

t

6

0◦

?

180◦
−180◦

- 90◦�−90◦ �
�
�
�
�
�
�
��

45◦

@
@
@
@
@
@
@
@R 135◦

�
�

�
�
�

�
�

�	−135◦

@
@

@
@
@

@
@

@I
−45◦

x-axis� -

y
-
a
x
i
s

?

6

Figure 1.2: Directions on the stage

First Steps 29

New construct in Scratch: turn

The instruction causes

the sprite to turn in a counterclockwise direc-
tion by the number of degrees that is speci-
fied in the window. Similarly, the instruction

causes the sprite to turn

in a clockwise direction by the number of de-
grees in the window.

Sequential run

In the script for Task 1, every click on the green flag causes
a sequence of two instructions to be run one after the other
in the order they appear in the script: first the move

instruction and then the turn instruction. Click on the
green flag several times and see how the cat moves on the
stage. Look at the display of the cat’s position and
direction in the upper left corner of the stage and explain
how the instructions cause these values to change, and in
what order they are changed.

30 Chapter 1

New concept: sequence of instructions and se-
quential run
A sequence of instructions is a set of instruc-
tions placed one after another.
In a sequential run, the instructions in the set
are run in the same order that they appear in
the sequence.

Before we finish working on this script, let us update the
comment in the yellow box that is in the script area. Click
within the box and change the text so that it explains what
the new script does. It is important that you always write
and update these comments so that it will be easy to
understand what a script does.

Saving a project

Let us save the new project
without erasing or damaging the existing
one. Click the word File at the top of the
window and then click the line Save As in
the menu. A window will open showing
the current folder; type in the name
of the new project. Make sure not to use
the same name as the old project, because
that will replace the old one with the new one. Now click

First Steps 31

on OK to save the file; an animated frame in the Scratch
window indicates that the save was carried out
successfully.

Example 3
Starting an animation from a fixed
place
We now extend the script for the cat to include a longer
sequence of instructions.

Task 2

Construct an animation that causes the cat to
move 100 steps and then turn 90 degrees
counterclockwise each time it is run (by clicking
the green flag). For each run, the cat will start at
the same place: the middle of the stage (0, 0)
facing right.

Program file name: initialize-and-move

Initialization

The two scripts that we have written so far have caused
the cat to move. After running each of these scripts, the cat
is at a new position, so that running the script again causes

32 Chapter 1

the cat to move starting from its new position. In other
words, the effect of running a script depends on the initial
position of the cat.

Let us now develop a script that results in the same
behavior each time it is run, regardless of the cat’s initial
position. To achieve this, we write a script whose first
instructions move the cat to a fixed position. Look at the
list of blocks in the left panel.

? Which instructions can be used to do this?

We can use the instruction .

Drag and drop the block with this instruction, placing it at
the beginning of the script immediately after the block

. Remember that a white line will

appear between the two blocks to indicate that you can
drop the block there. Scratch will automatically move the
existing blocks to make room for the new one. The middle
of the stage is at position (0, 0), so if the windows within
this block do not have zeros, click them and enter zeros.

Assigning initial values in a script is called initialization.
Here, we are ensuring that the initial position of the cat is
always in the center of the stage.

First Steps 33

New construct in Scratch: go to

The instruction causes the

sprite to change its position and go to a new po-
sition that is specified by the x (horizontal) and
y (vertical) values in the windows.

We would also like to start the cat’s movement when it is
pointing in a fixed direction. Following the initialization of
the cat’s position, we will place an instruction that will
initialize the cat’s direction. Look again at the list of blocks.

? What instruction do you think we can use to set the
direction?

The instruction (the fourth from

the top) enables us to point the cat in the direction given by
the number in the window. Drag-and-drop this block so
that it appears after the block with the go to x: y:

instruction. Check that the white area has the value 90,
meaning that the cat sprite faces to the right. If not, click on
the little arrow in the white area and choose (90)-right .

Save this script under a new name using the instruction
Save As.

34 Chapter 1

New construct in Scratch: point in direction

The instruction

causes the sprite to change the direction in
which it faces to the direction specified in the
window. By clicking on the small arrow in the
window you can select one of the four main
directions (up, right, down, left); alternatively,
you can type in any direction (0–360) that you
please.

Click on the green flag. The cat initially returns to the
center of the stage facing right (if it was not there already);
then it moves 100 steps to the right and turns
counterclockwise until it faces upwards. Click the green
flag again and again, and you will see that the cat returns
to the same position every time, because it starts its
movement from the same place, the center of the stage
facing right. The four instructions of the script are always
run in the same sequential order that they appear after the
top block for the green flag.

You can use the mouse to drag-and-drop the cat and place
it anywhere on this stage. Move the cat to an arbitrary
position on the stage and then click the green arrow.
Explain what happens.

First Steps 35

New concept: initialization
Initialization refers to instructions that set val-
ues at the beginning of a program. Most se-
quences of instructions will have an initializa-
tion part consisting of several instructions that
ensure that the sequence always starts running
from the same state.

Absolute and relative motion

The first two instructions
in the script for this
task are very different from
the second two instructions.

? Can
you explain the difference?

The instructions go to x: y: and point in direction

are called absolute instructions, because the motion that
results is the same no matter where the cat is and in what
direction it is pointing. The result depends only on the
values that are given to the instructions (in the windows).
For example, go to x: 0 y: 0 will always return the
cat to the center of the stage and point in direction 180

will always cause the cat to face the bottom of the stage.

The instructions move and turn are called relative
instructions, because the motion that results is relative to

36 Chapter 1

the current position and direction of the cat. That is,
although the number of steps that the cat takes and the
number of degrees it turns are specified in the windows of
the instructions, the final position and direction of the cat
depend on its current position and direction. For example,
if the cat is pointing to the right, the instruction move 100

steps will cause it to move 100 steps to the right, while if
the cat is pointing up towards the top of the stage, the
instruction move 100 steps will cause it to move 100
steps upwards. Similarly, the cat is pointing upwards, the
instruction turn counterclockwise 90 degrees will
cause it to face the left side of the stage, while a second run
of this instruction will cause it to point downwards.

New concept: absolute and relative instruc-
tions
An absolute instruction is one where the result
of running the instruction does not depend on
the current state, but only upon the values spec-
ified in the instruction.
The result of running a relative instruction de-
pends both upon the values specified in the in-
struction and the current state.

Example 4
Continuous motion

First Steps 37

Task 3

Construct an animation that causes the cat to
move around the stage, starting in the lower left
corner and returning there.

Program file name: move-around-stage

The scripts that we wrote for the previous tasks cause the
cat to move but you can’t really see the motion of the cat
because it happened so fast. There is another instruction

, which is similar to

, except that it causes the motion to be

gradual so that it can be seen. The glide block (the eighth
block from the top) has three windows that must be filled
with values to make it into a specific instruction: the first
value is the duration of the gliding motion, that is, the
number of seconds that the movement will take. The
second two windows are for the x and y positions to which
the sprite will move. You will have to experiment with the
value for the duration to see which one gives the best
visual display.

? Is the glide instruction an absolute instruction or a
relative instruction?

Let us compare with

. The goto instruction is clearly an

38 Chapter 1

absolute instruction because its only effect is to move the
sprite immediately to a final point, regardless of where it
currently is. The glide instruction achieves the same final
state but the time of gliding means that we are interested
in the appearance of the sprite as it moves to the final
point. This depends on the current state: if the sprite is
close to the final point it will move slowly, while if it is far
away it will move fast. We see that the glide instruction is
a relative instruction because its action depends on the
current state of the sprite.

New construct in Scratch: glide

The instruction

causes the sprite to move to the position speci-
fied in the windows labeled x and y. The time
it takes to reach this position from its current
position is specified in the first window.

Writing a description of the script for
this task

Let us use the instructions that we have learned so far to
write the script that will cause the cat to travel completely
around the stage. The cat will start in the lower left corner
and move in a counterclockwise manner around the stage.

First Steps 39

Before writing the actual script in Scratch, take a piece of
paper and draw the movement of the cat on the stage. This
will help you understand the sequence of instructions that
must be run for the cat to successfully complete its journey.
Next, make a list of the separate motions that the cat must
do. The list of movements will be as follows:

1. move the cat to the lower left corner of the stage
2. point the cat to the right
3. the cat moves to the lower right corner of the stage
4. the cat turns to face upwards
5. the cat moves to the top right corner
6. the cat turns to face left
7. the cat moves to the top left corner
8. the cat turns to face down
9. the cat moves to the bottom left corner

New concept: a description of the behavior of
a sprite
One of the first steps in developing a program-
ming project is to write out in words a descrip-
tion of the actions to be performed by the pro-
gram. A description is written as a sequence of
steps. The description must be clear and unam-
biguous, although it need not be fully detailed.

You will be tempted to skip over the step of
writing a description of a program; it is much

40 Chapter 1

more fun to start programming in Scratch
immediately. However, experience has shown
that as programs get longer and more complex
it becomes extremely important to think about
the design of the program first and to write
down the design. Don’t give into the
temptation to start programming right away!

Constructing a script for this task

This description can be easily translated into a Scratch
script. Here it is (but without the specific values in the go

to and glide blocks):

We have not yet learned how to place the block with the
green flag in the script, so let us start with an existing

First Steps 41

script and remove all its blocks except for the top one.
Bring your mouse pointer until it is pointing to the first
block just below the one with the green flag. Press and
hold the left mouse button; you will see that the block you
clicked on and all the ones below it can now be dragged. If
you drag them into the left panel with the list of blocks and
drop them, you will see that they disappear. Now you can
create a new script with a sequence of nine blocks
corresponding to the list we made above.

The position of a sprite refers to its
center

The position of a sprite usually refers to its center when it is
displayed on the stage. Since we do not want the sprite to
disappear, make sure not to move it too close to the edge of
the stage. To find how far a sprite can be moved without
disappearing, place the mouse cursor on its center, click
and hold down the left mouse button. Move the sprite to
an edge of the stage. Just before it begins to disappear,
make a note of the x or y position of the mouse position as
displayed below the right corner of the stage. You can
always change the values of move instructions to correct
the position.

42 Chapter 1

Running the script

Test the script by running it (clicking on the green flag) and
observing if the motion of the cat is what it is supposed to
be. If not, look very carefully at each of the instructions in
the script and compare it with the list of actions that you
wrote down. It is very easy to make a mistake like writing
9 for 90 or 100 for 10.

Add a comment to explain what the script does. To do so,
point the mouse to an empty area on the gray background
of the script area (the middle panel) and click the right
mouse button. You will see a small menu whose third
entry is add comment; click on that entry with the left
mouse button. A yellow window will open and you can
write your comments there.

When you have finished, be sure to save the project under
a new name.

Exercise 1

Create a script that causes the cat to start in the
upper right corner and travel around the stage
in a clockwise manner.

Guidance: Draw the movement on a piece of
paper and make a list of the separate
movements that are required so that the cat can
complete its journey successfully.

Program file name: move-around-stage-clockwise

First Steps 43

Make it a habit to plan your animations before you write
the scripts in Scratch; you will find that this will simplify
your work, especially when the animations become more
complicated.

44 Chapter 1

Summary

In this chapter, we met Scratch for the first time and we
learned basic concepts of computer science, as well as
constructs for writing programs in Scratch.

Concepts

Sprites: Scratch in an environment for creating animations
of sprites. Sprites move on a stage. The positions on the
stage are described by x- and y-positions from −240 to 240
along the x-axis and from −180 to 180 on the y-axis. The
center of the stage is at the point (0, 0). At any time when a
Scratch program is run, each sprite has a position as well
as direction in which it faces.

Sprites do not move by themselves; they only move
according to instructions, which are collected into
sequences called scripts. The instructions are run
sequentially, one after another, in the order that they
appear from top to bottom in the script. Scripts can begin
running when the green flag is clicked.

General and specific instructions: Many instructions are
general instructions, for which we need to supply values
in order to obtain a specific instruction that can be run. For
example, the instruction

needs three values to turn it from a general instruction to a
specific instruction: the number of seconds of the glide,

First Steps 45

and the x- and y-values of the position that the sprite will
glide to.

Absolute and relative instructions: There are two types of
instructions: absolute instructions whose effect is entirely
determined by the values that are supplied in the
instruction itself. For example, the absolute instruction

causes the sprite to move to position
(100, 100), regardless of the sprite’s current position
motion. The result of running a relative instruction
depends both on the values in the instruction and on the
current state of the sprite. For example, the instruction

causes the sprite to move 10 steps in the

direction it is currently facing, starting at its current position.

Initialization: We usually want the behavior of a sprite to
be the same each time it is run. This requires that we give
initial values to the state of the sprite such as its position
and direction. The instructions placed at the beginning of a
script so that it will always start running in the same state
are called the initialization of the script.

Written description: Before beginning to construct scripts
from Scratch blocks, a description of the behavior of the
sprites should be written down in English. This gives an
overview of the behavior without going into the details
such as the actual positions and directions. Descriptions
are written as a set of steps that need to be run to achieve
the required behavior of the sprites.

Comments: Comments explain parts of programs in

46 Chapter 1

written English. They help the reader of the program
understand the program but have no effect on the running
of the programming.

Scratch instructions

Motion instructions: Most of the blocks we have used so
far are used for motion instructions from the blue Motion
palette:

• : the sprite moves a number of steps

in its current direction;

• : the sprite moves to a specific

position;

• : the sprite turns a number of

degrees counterclockwise;

• : the sprite turns a number of

degrees clockwise;

• : the sprite turns to face in a

specific direction;

• : the sprite moves to a

specific position in a specific amount of time.

First Steps 47

These are all general instructions and you have to turn
them into specific instructions by supplying values such as
positions and directions.

Control instructions: When the first block of a script is

, it causes the script to begin

running when the green flag is clicked.

Scratch techniques

Blocks: Scripts are constructed using blocks containing
instructions. The construction is accomplished by dragging
and dropping the blocks: dragging the blocks using the
mouse and dropping them at an appropriate place.

Scripts from blocks: Blocks fit together to form scripts. A
bulge in the bottom of a block fits in to a notch in the block
below it.

Comments: Comments can be attached to scripts by
right-clicking in the stage area and selecting add comment.
The text of the comment is written in the light yellow box
that appears.

48 Chapter 1

Chapter 2

Multiple Sprites

The animations that we developed in the previous chapter
had a single sprite. In this chapter, we will develop
animations that have multiple sprites.

Example 1
An animation with two sprites

Task 1

Construct an animation with two sprites: the
first is our familiar cat and the second will be a
dog. The cat and the dog will appear on the
stage and move concurrently (that is,
simultaneously, at the same time). The cat will
cross the stage from left to right, while the dog
will cross the stage from bottom to top.

49

50 Chapter 2

Program file name: cat-meets-dog

We will create the animation in stages, starting with the cat
and its script, and then will we construct the dog and its
script.

Creating a new script

In the last chapter, we started with an existing sprite and
its script, and made modifications to the script. Here, we
will build the entire animation ourselves. When Scratch
first begins to run, it shows the cat sprite (called Sprite1),
but the middle panel has no scripts in it. Since the cat is
one of the sprites that we require, we do not need to
change the image. We do need to construct the script that
will cause the cat to move as required.

At any time when you are working with
Scratch, you can start a new project by clicking
on the menu File and then selecting New.

? What are the elements of the motion of the cat?

First, we have to position the cat at its initial position at the
left edge of the stage facing to the right; then, we have to tell
the cat to move to its final position. A written description
is:

Multiple Sprites 51

1. move the cat to its initial position
2. move the cat to its final position

? What Scratch instructions can implement these two
steps?

Step 1 requires two absolute instructions:

will move the cat to its initial position

and will cause it to point it in its

initial direction. The second step uses the relative
instruction to move the cat to

its final position. Drag and drop blocks with these
instructions to the script area in the middle of the Scratch
window. We need to enter values in order to change these
general instructions into specific instructions.

? What values need to be stored in the windows?

Look again at the diagram of the stage in the previous
chapter. The x-value of the left edge of the stage is −240,
but we will give the cat an initial x-position of −200 so that
we can see the entire cat. (The position of a sprite is the
center of the image used to display it.) The y-value of the
middle of the stage is 0 and we can use this value because
there is enough room above and below the middle to
display the entire cat. The initial direction is 90◦ so that the
cat points to the right. We leave it to you to enter
appropriate values in the windows of the glide instruction.

52 Chapter 2

Control instructions

We are almost done, but not quite. Recall that all our
scripts had a orange block at the top that enables a script to
start running when the green flag is checked. In the palette
that appears when Scratch is run, there are no orange
blocks, only blue blocks whose instructions relate to
motion.

The left gray panel is called the blocks palette.
A palette is a tray used by a painter to hold
paints of various colors; the painter dips a
brush into one of the paints on the palette and
then draws on a canvas. In the same way, you
“draw” a script by “dipping” your mouse
cursor into a block on the palette!

Look above the set of blue
blocks and you will see a
small rectangular area with
eight buttons in it. There
is a blue button labeled
Motion and another seven
buttons whose left edges
are colored. Click on the button with the orange edge
labeled Control. The button will now be colored completely
orange and in the blocks palette you will see a long list of
orange blocks. The first block in the list contains the
instruction when green flag clicked , which is exactly

Multiple Sprites 53

what we need. Drag this block and drop it at the top of the
sequence of motion blocks that you already built in the
center panel. The full script for the cat is:

The order in which you place the blocks within the script
doesn’t matter; only the final form of the script is
important. So you could have started the script with the
orange block and then added the motion blocks.

Blocks that can only appear at the start
of a script

There is something strange about the orange block we
added to the script. The top of the block is curved and does
not match the edge of any of the other blocks. This is
intentional and ensures that the instruction that starts the
running of a script can only be the first instruction in a
sequence. No no block has a curved bottom edge that could
match the top of this one.

54 Chapter 2

New construct in Scratch: start running a
script (green flag)

The instruction indi-

cates that the the instructions beneath it will be
run when the green flag is clicked. This block
can only appear at the beginning of a script.

Multiple Sprites 55

Adding a new sprite

Let us now add the new sprite. There is
a rectangular gray panel at the lower right
corner of the Scratch window; this panel is
used to add and modify the sprites in the
animation. On the left you can see a small
white rectangle labeled Stage; this is the
white background of the stage and later we will learn how
it can be changed. On its right you can see a small icon that
represents the cat sprite that already exists in our
animation. Just above the panel you will see three buttons:

Click on the middle button which is used to select an
existing image for a new sprite. Click on the folder labeled
Animals to select it and then click OK. (The folder Animals

will probably already be selected when the menu is shown;
you can tell by the blue background around the icon for
the folder.) Scroll down through the display of animals
until you find images of dogs; click on the third image,
dog2-c, which shows a walking dog.

To scroll through the images, bring your mouse
cursor until it points to the vertical button at the
right side of the menu; press and hold the left
mouse button and drag the vertical button up

56 Chapter 2

and down until you get to the area that you
want; now release the button.

In the sprite area at the lower right of the Scratch window,
you will see a small icon with the image of the dog. If you
click on this icon, the script panel in the middle of the
window will show the script for the dog sprite. Of course
it will be empty because we have yet to construct a script
for the dog. Practice clicking on the cat and the dog icons
and see how the script area changes. There will be a frame
around the icon of the sprite that was last selected and
whose script appears in the script area.

New construct in Scratch: creating a new
sprite

The middle button above the sprite area enables
you to add a new sprite to your program. You
can choose any one of the images in the Scratch
library or you can choose any image that you
wish from one of your folders. Most images for-
mats like GIF, JPG and PNG can be used.

Multiple Sprites 57

Naming sprites

Before continuing,
let us give names
to our sprites
instead of the
names Sprite1 and Sprite2 that Scratch gave for us.
Above the sprite panel in the center of the window, you
will see a small rectangular area with the icon for the sprite
and to its right the name of the sprite. Click here and type
in a new name such as Cat or Tom for the cat, and Dog or
Rover for the dog. Remember that you will have to click on
the icons in the sprite area in the lower right corner to
change the display from one sprite to another.

Construct the script for the dog

Click on the icon for the dog sprite to select it. Use the
script for the cat as a model and change the values of the
instructions so that they cause the dog to move from the
bottom center of the stage to the top. Here is the script that
we constructed:

58 Chapter 2

When you are done, click on the green flag; what happens?

Both the dog and the cat sprites move at the same time!

You can see how the two sprites move, how they meet at
the center of the stage and how the dog passes over the cat.

It is important to document every script
with an appropriate comment. Move the
mouse to an empty (gray) area in a script
and right-click; select add comment
from the menu that appears. Write your
comment in the yellow box that appears.

Save the project that you have just constructed.

New concept: concurrency—sprites running
concurrently
When a program is run, the scripts of all sprites
are run concurrently. This means that the
scripts are run at the same time (one instruc-
tion after another) without one script waiting
for another to finish, or being dependent on one
another.

Exercise 1

Everyone knows that dogs like to chase cats.
Construct an animation that has both the cat
and the dog start in the lower left corner of the

Multiple Sprites 59

stage. The cat moves to the upper right corner
and the dog chases after it.

Guidance: The script for the dog will have
three parts: first, the initialization; then, the dog
will slowly chase the cat until the dog reaches
the center of the stage; finally, the dog will
chases the cat faster and catch up with it. You
can use glide instructions to cause the dog to
chase the cat. Adjust the times of the glides to
achieve the desired effect.

Program file name: dog-chases-cat

Additional material on Scratch: Mouse
modes

In this section we describe some advanced ways of
manipulate sprites and scripts using the mouse. You can
skip this for now and return to it whenever you want to.

You will certainly have noticed that the script for the dog
was exactly the same as the script for the cat, except for the
values entered into the windows of the blocks. Instead of
constructing the script for the dog block by block, it is
easier to duplicate the script for the cat, move it to the script
area of the dog and then change the values in the
instructions.

60 Chapter 2

Duplicating a script

Ensure that the cat sprite is selected and
that its script appears in the script area.
Above the left corner of the stage, you will see a toolbar
consisting of four buttons. Click on the left button, whose
image looks like a rubber stamp; this changes the mouse to
work in duplicate mode and the mouse cursor turns into a
small rubber stamp. Now, bring the mouse cursor to the
cat’s script, press the left button and hold it; a new copy of
the script will appear to the sprite area and you can drag it.
Drop it on the icon for the dog. Note that the mouse cursor
has returned to its normal shape and the arrow button has
been reselected. Click now on the dog icon and you will
see that you have a copy of the cat’s script in the dog’s
script area.

Whenever you drag and drop a script, the block that the
mouse pointer points to and all blocks below it are moved.
Therefore, to drag-and-drop an entire script, make sure
that the mouse pointer points to the first block, usually the
one with the orange block for when green flag clicked .

The duplicate button can also be used to duplicate a sprite
together with all its scripts and costumes (see below).
Click on the button so that the rubber stamp icon appears;
now click on a sprite in the sprite area below the stage. A
new copy of the sprite will appear, although it will have a
different name.

Multiple Sprites 61

New construct in Scratch: duplicating sprites
and (portions of) scripts

The left button above the stage can be used
to duplicate a (portion of) a script. Click on
the button and then press and hold the left
mouse button on a block in a script. This will
create a copy of the block and all blocks below
it. Drag-and-drop the copy blocks to someplace
in the same script area or to another sprite.
The button can also be used to duplicate a
sprite. After clicking on the duplicate button,
click on a sprite or its icon in the sprite area
and another copy will appear. You can drag and
drop either the sprite or its icon to move them.

Erasing a sprite and changing the size of
a sprite

The toolbar has three other buttons. The second button
from the left is used to delete a sprite or a script . The
two buttons on the right can be used to increase or
decrease the size of a sprite on the stage. Experiment
with these buttons, but be sure to save the project first so
that you can load a fresh copy of the project later.

The buttons duplicate and delete behave

62 Chapter 2

somewhat differently from the increase and
decrease buttons. Once you have duplicated or
deleted a sprite or a script, the mouse cursor
returns to its original form, and you will have
to click on the same button to perform the
action again. After increasing or decreasing the
size of a sprite, the mouse remains in that mode
so you can increase or decrease the size
repeatedly. To return to the normal mouse
mode, click the left mouse button when the
cursor points to an empty area of the stage.

New construct in Scratch: changing the size
of sprites, deleting sprites and (portions of)
scripts

To increase or decrease the size of a sprite, click
on or and then click (repeatedly if neces-
sary) on the sprite.

To delete a sprite, click on and then on the
sprite. To delete a (portion of) a script, click on

and then on a block; the block and all the
blocks below it will be deleted.

Multiple Sprites 63

Additional material on Scratch:
Changing costumes

You don’t have to use the initial images of the sprite that
are supplied by the Scratch software. The images, called
costumes, can be changed, or you can create your own.
Modifying the appearance of the sprites is fun, but we
suggest that you don’t spend too much time doing so.

Task 2

Change the costumes of the cat and the dog.

Program file name: costumes

Click on the icon of the
cat’s sprite in the sprite
area in the lower right of the Scratch window. The script
panel (the gray panel in the middle of the Scratch window)
has three tabs at the top. When the tab labeled Scripts is
selected, the scripts for the sprite are displayed. Click now
on the tab labeled Costumes. The gray panel displays a list
of the costumes of the currently selected sprite. Click on
the image of the cat’s costume and then click on the button
labeled Edit. This opens a window labeled Paint Editor,
which is similar to the Paint program in Windows. We will
talk you through one modification of the costume for the

64 Chapter 2

cat and then let you experiment with other options when
you change the costume for the dog.

In the upper left corner of
the window there is a double
row of buttons. Click on the
Fill button, which is the middle
one in the upper row; it looks like a can of paint with paint
spilling out of it. Now click on one of the colors in the
lower area. Move your mouse pointer to the image of the
cat displayed in the grid in the right area of the window.
Click somewhere within the orange head of the cat; it will
now change to the color you have chosen. Click on another
color and then click within the black nose of the cat; the
color of that area will change also. Don’t be afraid to make
a mistake, because you can always go back by clicking on
the Undo button just above this set of buttons.

New construct in Scratch: editing a costume

Clicking on the tab labeled Costumes in the
script area causes the set of costumes for the
currently selected sprite to be displayed. Se-
lect one costume by clicking on its icon and then
click on Edit. The Paint Editor is shown in a new
window and can be used to modify the image of
this costume.

Multiple Sprites 65

Summary

Concepts

Concurrency of multiple sprites: Several sprites can take
part in a Scratch animation and each sprite has its own
scripts. Clicking on the green flag causes the scripts of all
sprites to be run concurrently—at the same time.

Scratch techniques

Building scripts from blocks: New scripts are created by
dragging and dropping blocks from a palette. The blocks
in Scratch are displayed on the blocks palette at the left of
the screen. You can select which list of blocks you want
displayed by clicking on the colored buttons above the
palette. In addition to the Motion instructions (colored
blue), we used an instruction from the Control instructions
palette (colored orange): the instruction when green flag

clicked that causes the script to start running.

Creating sprites: You can create additional sprites by
selecting the image of the sprite after clicking on the the
middle button above the sprite area. Each sprite has its
own script. Clicking on the icon of the sprite causes its
script to be displayed. The name of each sprite can be
changed in the area above the script area.

Mouse actions menu: Clicking on one of the buttons of the
toolbar just above the stage changes the mode of the

66 Chapter 2

mouse. Selecting one of these buttons causes the mouse to:
(1) duplicate sprites and scripts, (2) delete sprites and
scripts, (3) make sprites larger, (4) make sprites smaller. To
return to the normal mouse mode, click outside this menu.

Costumes: The appearance of a sprite in Scratch is
determined by its costume. New costumes can be created
and existing costumes can be modified by selecting the
Costumes tab above the script area. Costumes can be
imported from a file, or they can be created and modified
using the Paint Editor.

Chapter 3

Short Scripts, Long Runs

The animations we have created share a common
characteristic: their scripts were finite sequence of motion
instructions. The instructions in the sequence were run one
after another when the green flag was clicked. They
included a variety of instructions (absolute motion,
relative motion), and they were of different lengths, from a
sequence of one instruction to a sequence of nine
instructions. Nevertheless, the general structure of all the
scripts was similar, and the animations, too, were very
similar: a finite sequence of movements that occurred one
after another, always in the same order. The number of
movements was always the same as the number of motion
instructions in the script. In this chapter, we will enrich the
animations that we create by putting the basic instructions
together in new ways.

67

68 Chapter 3

Example 1
Infinite Run
We want to create an animation that runs indefinitely
without stopping. Of course, it is impossible to write an
infinite sequence of instructions, so we need to learn how
to create an infinite run from a finite set of instructions. We
will start with the last animation from the previous
chapter, where the cat and the dog sprites cross the stage,
one from left to right and the other from bottom to top.

Task 1

Modify the animation from the previous
chapter so that the cat and the dog cross the
stage again and again without stopping: the cat
will move continuously from left to right and
then right to left, and the dog will move
continuously from bottom to top and then top
to bottom.

Program file name: meet-forever

We break down the task into parts and deal with each one
by itself. First, let us analyze the motion of the cat. To start,
we place the cat at its initial position and facing in its
initial direction. Now we wish to construct a sequence of
instructions that cause back-and-forth motion, such that
when the cat reaches an edge of the stage it turns around

Short Scripts, Long Runs 69

and faces in the other direction. The movement of the cat
will be constructed of short movements (say 10 steps)
repeated again and again. After each movement, the cat
will check if it is touching the edge of the stage, and, if so,
it will change direction to face in the opposite direction.

A description of the program is as follows:

0. when the green flag is clicked
1. go to the starting position (x = −200, y = 0)
2. face in the initial direction (90◦, right)
3. repeat again and again

3.1 move 10 steps
3.2 if you have reached the edge, turn around

We already know how to translate steps 0, 1, 2 and 3.1 into
Scratch instructions. This leaves instructions 3 and 3.2.

For step 3.2 there is a motion instruction

which appears as the fourth block

from the bottom in the blue palette.

New construct in Scratch: bouncing at the
edge of the stage

The instruction causes the

sprite to reverse its direction if it is touching the
edge of the stage. For example, if it is moving in
direction 90◦ (right) and is touching the edge, it
will turn to face in direction −90◦ (left).

70 Chapter 3

Repeated run of instructions

For step 3, we need an instruction that doesn’t modify the
animation by itself, but rather causes other instructions to
be run repeatedly. Instructions that affect the sequence in
which other instructions are run are called Control
instructions, because they are used to control the running
of other instructions. These instructions can be found in
the orange palette. The instruction that we want is infinite
run instruction defined by the fourth block from the top:

.

The structure of this block is different from the previous
blocks that we have used. They had small bulges and
sockets that enabled them to be joined one on top of
another to form a sequence of instructions.

The one exception was the block ,

which can only be the first block in a sequence since it has
no socket on the top.

The block has a socket on top so that it can

appear after another block, but it does not have a bulge on
the bottom, so no block can be placed after it.

? Why can’t you add a block after the forever block.

You can’t add another block because the forever block

Short Scripts, Long Runs 71

runs “forever” so no block that appears after it would ever
be run.

The block looks like a “mouth” that is open on its right
side. This enables the block to enclose other blocks that are
to be run repeatedly. Let us see how to construct step 3 of
the animation described above.

Drag the forever block from the palette and drop it in the
script area. Now change to the Motion palette (the blue
one) and drag the block for the move instruction so that it
is within the “mouth” of the forever block. As usual, you
will see a white line that indicates that you can drop the

block there. Now locate the block and

drag it, dropping it after the move block but still within the
forever block:

The meaning of this structure is that the two instructions
corresponding to the blocks enclosed within the forever

block will be run again and again, forever.

Complete the script by adding the blocks for instructions
that implement steps 0, 1, 2 above the forever block. Click
on the green flag and check that the cat moves indefinitely
without stopping, and that when it reaches the edge of the
stage it changes direction.

72 Chapter 3

Although the script is constructed from only six
instructions, the animation runs indefinitely without
stopping. This is because the infinite run instruction causes
two other instructions to be run again and again. Any
animation, even an infinite one, can be stopped by clicking
on the red stop sign that is next to the green flag.

Create a similar script for the dog sprite. It will be the
same as the script for the cat, except that the dog will start
in a different position, facing in a different direction. Click
on the green flag and you will see both the cat and the dog
sprites moving at the same time indefinitely.

Save your animation as a new project.

New concept: infinite run
An infinite run occurs when some instructions
are run again and again without indefinitely.

Infinite runs are common in programs like web browsers
that are always willing to accept a new request from the
user.

Short Scripts, Long Runs 73

New construct in Scratch: infinite run

The instruction causes the instruc-

tions included within its “mouth” to be run
again and again without stopping. No blocks
can be placed after this block.

Exercise 1

The
cat is
tired of
being
chased
by
the dog
and calls his relative, the wildcat, to scare the
dog away. Initially, the wildcat is positioned in
the center of the stage and faces the dog. The
dog jumps around the wildcat (above, to its
right, below, to its left) each time barking at the
dog. Whenever the dog jumps, the wildcat
turns to face it; the wildcat is so scary that the
dog continues jumping forever.

Guidance: Write precise descriptions of the
behavior of the wildcat and the dog, and then

74 Chapter 3

translate them into Scratch scripts. Run your
project, document it with comments and save it.
An appropriate image for the wildcat sprite is
cat4 in the folder Animals. You will want to use
the Scratch instruction that

causes the sprite to point towards another sprite
(or the current position of the mouse cursor).

Program file name: big-cat

Example 2
infinite run with a condition
In the animation of the previous example, the cat and the
dog pass each other without any interaction. Animations
are much more interesting if there is some interaction
between the sprites that take part.

Task 2

The cat and the dog will start from the center of
the stage and move towards its edges. The dog
will move upwards from the center, while the
cat will move to the right. When the two sprites
are touching, they will say something to each
other even as they continue their motion. When
they move far enough away so that they are no
longer touching each other, they will stop their
motion and stop speaking.

Short Scripts, Long Runs 75

Program file name: say

To make it easy to observe the interaction, we will increase
the amount of time that they are near each other by
slowing down the motion: each small movement of the
sprites will be for 5 steps instead of 10.

In this animation, we are interested in running a sequence
of instructions again and again, but some of the
instructions (the ones that cause the cat and the dog to
speak) will only be run if the sprites are touching each
other. A description of the actions of the cat is as follows:

0. when the green flag is clicked
1. go to the starting position (x = 0, y = 0)
2. face in the initial direction (90◦, right)
3. repeat again and again, if you are touching the dog

3.1 move 5 steps
3.2 say Help

To construct this script in Scratch, we have to find
instructions for steps 3 and 3.2. Let us start with step 3.

The instruction for step 3—repeated run together with the
check—can be found in the orange palette of Control

instructions. The appropriate block is

which is the 10th block from the top.

This instruction is similar to the forever instruction
except that it contains a condition that must be true if the

76 Chapter 3

enclosed instructions are to be run. (The condition is
entered in the window with the angled ends, as explained
below.) The condition is checked each time before the
enclosed instructions are to be run. The instructions are
run if the condition is true. If the condition is false, the
enclosed instructions are not run, though it is possible that
later on the condition will become true and the enclosed
instructions will be run the next time the condition is
checked (see Example 3, below).

The condition “touching?”

What remains to do is to implement the second part of step
3 which ensures that steps 3.1 and 3.2 are run only if the
cat and dog sprites are touching. In Scratch, every sprite
has sensors which can sense various situations. Here, we
want the cat sprite to sense if it is touching the dog sprite.
This can be expressed as a question:

Am I (the cat sprite) touching the dog sprite?

A question which can be answered “yes” or “no” is called
a condition.

Often we use a different terminology. A condition is a
statement like:

I (the cat sprite) am touching the dog sprite

Short Scripts, Long Runs 77

that can be determined to be “true” or “false.”

The blocks for conditions can be found in the light blue
palette Sensing. The third block from the top is

and it has a window in which we can
select the object that this sprite may be touching.

Let us now construct the script. Drag-and-drop the
forever if block onto the script area. After the word if

there is a window with angled ends, which indicates that a
condition must be entered. Drag and drop the block
touching into the window. Now, click on the small
window within the block touching and select the word
Dog from the list. The block now reads ,
where the question reminds you that it is asking the
question:

Am I (the cat sprite) touching the dog sprite?

If the answer is “yes” (“true”), instructions enclosed within
the mouth of the forever if block will be run; if the
answer is “no” (“false”), the instructions will not be run.

New concept: condition
A condition is a question whose answer is “yes”
or “no,” or a statement that is “true” or “false.”

78 Chapter 3

New construct in Scratch: the condition
“touching ?”

The condition is true if the
sprite that is running this script is touching
whatever is within the window, such as another
sprite.

New concept: infinite run with a condition
An infinite run with a condition checks the con-
dition before each run of the enclosed instruc-
tions. If the answer to the condition is “yes” or
“true,” the enclosed instructions are run; oth-
erwise (“no” or “false”), they are not run. In
either case, the infinite run continues and does
not stop.

New construct in Scratch: infinite run with a
condition

The instruction causes the

condition to be checked again and again. If
the condition is true, the instructions included
within the “mouth” of this instruction are run;
otherwise, they are not.

Short Scripts, Long Runs 79

Talking sprites

Step 3.2 requires the cat to say Help. As in comic books,
sprites “say” something by having a balloon displayed
with the words to be said; the balloon is connected by an
arrow to the sprite. The instruction for speaking is

, which is the fourth block from the

top in the purple palette Looks. Drag and drop it within
the “mouth” of the forever if block. Type the words to
be said (here Help) into the first window of the block and
the number of seconds that the balloon should appear
(here 0.5) into the second window: .

New construct in Scratch: talking

The instruction causes

a balloon to appear near the sprite that runs it;
the balloon contains the words written in the
first window and it appears for the number of
seconds written in the second window.
There is another version of this instruction

. The balloon will appear indefinitely

until the end of the animation or until another
say instruction is run.

Complete the script for the cat by adding blocks for steps
0, 1, 2, 3.1.

80 Chapter 3

Create a script for the dog sprite that is similar to the one
for the cat sprite except that it moves from the center
towards the top of the stage. As long as it is touching the
cat sprite, it will say Yum for one half second. Run the script
by clicking on the green flag. Add comments and save the
animation in a project with a new name.

Example 3
Multiple scripts
We have created several animations with two sprites, each
sprite with its own behavior. The behavior of each sprite is
determined by a single script that was written for that
sprite. Scratch supports multiple scripts for each sprite.
This is convenient if we want to affect the behavior of the
sprite in several different ways.

Task 3

Construct an animation where the cat and the
dog move across the stage indefinitely,
bouncing off the edges of the stage. Whenever
they meet, the cat will say Help and the dog will
say Yum.

Program file name: meet-forever-and-say

The new animation will have two scripts for each sprite.
The first script that describes the movement will be the

Short Scripts, Long Runs 81

same as the script in the first example, while the second
script will check the condition that the two sprites touch as
in the second example. Both scripts for both sprites will
start with the instruction when green flag clicked, so that
all four scripts will start running concurrently—at the
same time—when the green flag is clicked.

Start by opening the project that contains the first
animation. Click the button Save as to save this project
under a new name. By doing this we will already have the
first script for each sprite.

The script for talking

What does the second script for each sprite do? It has to
check repeatedly if a sprite is touching the other sprite and
if so to say something. For the cat sprite, this will be:

0. when the green flag is clicked
1. repeat again and again, if you are touching the dog

1.1 say Help

This is exactly the same as the script in the second
example, except that the motion instructions have been
removed. That is because the responsibility for moving the
cat is assigned to the first script, while the second script is
only responsible for the instructions related to touching
another sprite.

82 Chapter 3

The script area already contains the first script, but you can
create the second script in any blank part of the script area
by dragging and dropping the appropriate blocks. Here is
the pair of scripts for the cat sprite:

Similarly, create a second script for the dog sprite that says
Yum when the sprite touches the cat. Click on the green flag
and watch the animation. Since you have already created a
new name for this project, click the Save button to save it
after you have added comments.

New concept: concurrency of several scripts
running at the same time
A sprite can have more than one script. All
the scripts are run concurrently—at the same
time—whether they are in the same sprite or
different sprites.

Short Scripts, Long Runs 83

Exercise 2

Construct an
animation with
three sprites:
a girl, the
Sun and a pair
of sunglasses.
The sunglasses
are magical
and automatically sense when the Sun is about
to shine in the eyes of the girl. The girl sits at a
fixed point on the stage. The Sun rises and sets
by moving up and down the stage. The magical
sunglasses are initially placed to the right of the
girl. Whenever the sunglasses touch the Sun,
they quickly move to cover the girl’s eyes and
then return to their initial position.

Guidance: For the sprites use a girl from the
People folder, the Sun is in the Fantasy folder and
the sunglasses are in the Things folder. Place the
girl at the left edge of the stage (x=−150) and
place the Sun and the sunglasses about 100
steps (x=−50) to the right of the girl’s position.

Program file name: sunglasses

84 Chapter 3

Additional material on Scratch:
Changing the background

All the animations we have created so far have had sprites
moving on a blank stage. Here we show how to change the
background of the stage to make more colorful animations.

Task 4

Modify the animation for the previous task by
changing the background.

Program file name: background

Look in the sprite area in the lower right corner of the
screen. To the left of the cat and dog sprites you will see a
white rectangle labeled by the word Stage. Click here and
you will see that the script area changes to the one for the
stage. The script area will be empty because we have not
written scripts for the stage. Click on the tab labeled
Background. From here, you can add a new background
image or modify the current background of the stage. You
can even use a picture that you have taken with a digital
camera as a background.

Click on the button Import and select an image to be used
for this background. For example, select the folder Nature

and click OK; you will see a set of small images of the
various backgrounds. Click on one of them, for example,

Short Scripts, Long Runs 85

forest, and then click OK. This image will replace the white
background on the stage, but the scripts will remain the
same, as you can see by clicking on the green flag.

Save the animation as a new project. Before saving the
project you may want to delete the white background.
Click on the image of the background and then click on the
small button with an X to the right of the button labeled
Copy.

New construct in Scratch: changing the back-
ground

You can change the background of the stage. A
background can be created by the Paint Editor,
or you can import an image from a file or from
a digital camera. Changing the background is
performed from the area displayed when the
Backgrounds tab of the stage is selected.

Summary

Concepts

Concurrent run of multiple scripts for one sprite: A sprite
can have multiple scripts that are executed
concurrently—at the same time. Interesting animations can

86 Chapter 3

be constructed by having multiple sprites, each with
multiple scripts, running concurrently.

Control instructions: Control instructions do not affect
the animation directly like motion instructions, but rather
describe how other instructions will be run.

Infinite run: During an infinite run, a sequence of
instructions is run again and again, indefinitely.

Infinite run with a condition: An infinite run may have a
condition associated with it. A sequence of instructions is
run again and again, indefinitely, but only when the
condition is true. If the condition is not true, the enclosed
instructions will not be run, although they will be run later
if the condition ever becomes true. An infinite run with a
condition is meaningful only if there are multiple scripts,
so that some other script can make the condition true or
false.

Scratch instructions

Infinite run: The instruction causes an infinite

run of the sequence of instructions within its “mouth.”

Infinite run with a condition: The instruction

causes the sequence instructions

within its mouth to be run indefinitely but only on those

Short Scripts, Long Runs 87

runs when the condition is true. The condition is written in
the small window after the word if.

Touching: The condition from the light
blue Sensing palette is used to check if the sprite is
touching another sprite. It can also be used to check if the
mouse is touching the sprite or if the sprite is touching the
edge of the stage.

Touching the edge: The instruction is

used to change the direction of motion of a sprite when the
sprite touches an edge of the stage.

Speaking: The instruction from

the Looks palette causes a balloon containing text to
appear above the sprite for a period of time. The
instruction is similar, but is not limited in time

and appears until the animation completes.

Scratch techniques

Changing the background: The background on the stage
can be changed by selecting an image from a file. A
background can be created using the Paint Editor or a
digital camera.

88 Chapter 3

Chapter 4

Communications Between
Sprites

In the previous chapter we created an animation that
contained interaction between sprites: when the cat sprite
touched the dog sprite, there was a reaction—talking—in
the behavior of both sprites. In this chapter we will learn
more about interaction between sprites, both in the way
that they react and in the events that occur. To do this we
will learn new instructions in Scratch that will enable us to
write richer and more interesting scripts.

Example 1
The opening kickoff

Task 1

89

90 Chapter 4

Construct an animation of the opening kickoff
in a game of soccer. Our familiar cat will
pretend to be the famous player Pele. He waits
for the referee to signal that the game is to start
and then he kicks the ball.

Program file name: cat-kicks

The project will be developed in two stages. First, we need
to select the images for the three sprites and place them in
their initial positions facing in their initial directions.
Second, we need to cause each sprite to perform its actions:
the referee signals, Pele kicks the ball and the ball moves.

Defining the sprites

? Which sprites will participate in this animation?

It is clear that there will be one sprite for the player Pele
and another one for the referee, but in addition we need a
sprite for the ball, because the ball is an object that
participates in the animation. The ball will wait at the
opening position until it is kicked by Pele. Since it moves
when it is kicked, the ball must be a sprite with its own
script that contains motion instructions.

Guidance (Selecting the sprites): Any new project in
Scratch starts with the cat sprite on the stage, so all you
have to do is change its name to Pele (or, if you prefer, the

Communications Between Sprites 91

name of your favorite player). Next, add a sprite for the
referee, as was explained in Chapter 2. In the library of
Scratch images, you can find an appropriate image called
referee2 in the folder People. Change the name of the sprite
to Referee. Now add a third sprite for the ball using the
image called soccer1 in the folder Things. Choose a name
for this sprite, too.

Initializing the sprites

Exercise 1

For
each of the three
sprites, plan and
construct scripts
that perform
initialization
of the sprite’s
position and direction when the green flag is
clicked. Drag the sprites to arbitrary positions
on the stage with your mouse, and then click on
the green flag to check that they move to their
correct initial positions. Write comments and
save the project.

92 Chapter 4

Initiating the action

In a real game of soccer, the referee blows his whistle to
start the game and we will do the same here. The referee
sprite will notify the other sprites to kickoff:

1. initialize position and direction
2. say Kick

3. notify the other sprites to kickoff

? Why do we have two actions: Say and Notify?

The say instruction in Scratch causes a balloon to appear
on the stage. It is seen by the people who watch the
animation on the computer screen, but it does affect the
other sprites at all. We need another instruction that will
cause the referee sprite to notify the other sprites that
participate in the animation. There will be two
instructions: one for the referee to send a message and
another for the other sprites to receive the message, after
which they will begin their actions.

To implement step 3, notify, use the instruction
which is a Control instruction that can be

found in the orange palette, the seventh block from the
top. This is a normal block that can be included anywhere
in the sequence of blocks of the script. For the referee
sprite, place it after the say instruction. There is a window
that can be used to select the message to be sent. Click on
the window, select new ... and type in the word Kick as

Communications Between Sprites 93

the name of the message. Add a comment explaining the
script for the referee and save the project.

New construct in Scratch: broadcast

The instruction causes the

sprite send a message to all other sprites. The
name of the message is chosen from those avail-
able in the window or you can define a new
message.

Scratch prefers the word broadcast over send because the
message is sent to all the sprites in the animation just as a
TV show is broadcast to all people in an area.

Pele receives the notification to kickoff

Pele is supposed to kick the ball after the referee sends the
message Kick:

1. When I receive the message to kickoff
2. Kickoff

? How does a sprite receive a message?

The script for the sprite has to start running when a certain
event happens, namely, receiving a message. The word

94 Chapter 4

when alerts us that the instruction will be similar to when

green flag clicked : clicking the green flag is also an
event and when it is clicked a script begins running.

Like the top of the block

(orange Control palette, the ninth

block from the top) is curved so that it can only be the first
block in the script. When the event of receiving a message
occurs, the script following the block is run.

The sprite for the Pele will have two scripts: one that starts
when the green flag is clicked and initializes the position
and direction of Pele, and a second one that starts when
the message is received from the referee and causes the
Pele to kick the ball.

Drag the block and drop it in an

empty place in the script area. Click on the window and
select the message Kick. (Once we have defined a message
in one instruction, the message appears in the menus of
other instructions related to messages.)

Communications Between Sprites 95

New concept: communications through mes-
sage passing
Sprites can communicate with each other by
sending and receiving messages. When a sprite
sends a message, it is broadcast to all the sprites
in the project. When a sprite receives a message,
any scripts that wait for this particular message
begin to run.
By using messages, we can coordinate the runs
of scripts in different sprites, ensuring that one
script begins to run only after another script has
run some of its instructions.

New construct in Scratch: receiving a message

The instruction can ap-

pear only as the first block in a script. When the
message specified in the window is received,
the script begins to run.

Pele kicks the ball

? What sequence of instructions is appropriate for the
action of kicking a ball?

96 Chapter 4

This action is composed of two separate actions: Pele kicks
the ball and then the ball moves as a result of the kick. The
first action is performed by the Pele sprite, while the
second action must be performed by the ball sprite. The
reason is that running an instruction affects only the sprite
whose script contains the instruction.1

The action for Pele is very simple: he moves until his sprite
touches the ball sprite:

1. when I receive the message to kickoff
2. say Let’s go

3. move (until you touch the ball sprite)

Step 2 is added so that you can see when Pele has received
the notification from the referee and is about to kick the
ball. You will have to experiment with the number of steps
in the move instruction so that Pele touches the ball sprite.

New construct in Scratch: size and position of
a sprite

The position of a sprite is the position of the
center of its image.
A sprite touches another sprite when any part
of the sprite touches any part of the other sprite.

1An exception would be the instruction of broadcasting a message,
but even here it is the message which affects other sprites, not the broad-
cast instruction.

Communications Between Sprites 97

Write the scripts for the Pele sprite. There will be two
scripts: one for the initialization that will be performed
when the green flag is clicked and one for kicking the ball
that will be performed when the Kick message is received.
It is important that there be two scripts so that the ball isn’t
kicked until after the referee blows his whistle.

Add a comment for the Pele sprite and save the project.
Although we haven’t finished the project, it is a good idea
to save our work frequently in case the computer crashes
or in case we want to start over from an intermediate stage.

The ball is kicked

Now it is the turn of the third sprite, the ball, to play its
role in the animation. The ball must start moving when it
is kicked by Pele:

0. when you are kicked by Pele
1. move left to the edge of the stage

We previously decided that the Pele and ball sprites
should start when the referee blows his whistle, that is,
when they receive the message to kickoff. However, the
ball should not move until it is kicked by Pele. We defined
that the ball is kicked when the Pele sprite touches the ball
sprite. Therefore, the description of the ball’s script should
be as follows:

98 Chapter 4

0. when the Kick message is received
1. wait until you touch Pele
2. move left to the edge of the stage

The script starts with the orange Control instruction for
receiving the message. For step number 2, a glide

instruction can be used so that we can see the motion of
the ball after it is kicked.

? What about step 1: waiting until you touch Pele?

We need an instruction that will wait until a condition is
true. The meaning of the instruction will be: this script will
stop running and only start again when the condition
becomes true. Conditional waits are used to coordinate the
running of several sprites: one sprite waits for a condition
and another sprite is responsible for ensuring that the
condition eventually becomes true.

The block is the fourth block from the

bottom in the orange Control palette (You will have to
scroll the palette to find this block.) A condition must be
placed in the window with angled ends. The appropriate
condition is which we used in previous
animations. In the window of the condition, we will select

the sprite Pele: .

Communications Between Sprites 99

New concept: conditional wait
A conditional wait causes a sequence of in-
structions to stop running until the condition
becomes true. When the condition is true, the
sequence of instructions resumes running.
A conditional wait is used to coordinate actions.

New construct in Scratch: conditional wait

The instruction causes the run

of the script to stop and wait until the condi-
tion that appears in the window is true. When
that happens, the script resumes its run at the
block following this one.

Construct the scripts for the ball: the initialization when
the green flag is clicked and the action of being kicked
when the whistle is blown. Experiment with the values in
the glide instruction until you get a pleasing animation.
Add a comment to the ball sprite and save the project.

Summary: Let us summarize the sequence of actions that
you see when the animation is run. When the green flag is
clicked, all three sprites simultaneously move to their
initial positions and directions. The referee says Kick, Pele
says Let’s go and kicks the ball (moves until he touches
the ball). The ball is kicked (moves to the other side of the
stage) when it is touched by Pele.

100 Chapter 4

Exercise 2

Expand the project so that there are two players
kicking two balls at the same time when the
referee blows his whistle.

Guidance: For the second player use the dog
sprite (named, perhaps, Maradona) and a
second ball. The scripts for the Maradona sprite
and the second ball sprite will be the same as
for Pele and first ball, except for their positions
and movements. Place Maradona and his ball
below Pele and his ball. Make sure that the
second ball only responds to a kick from
Maradona and not to a kick from Pele!

Program file name: cat-and-dog-kick

Exercise 3

In the previous exercise, the ball kicked by
Maradona reaches the referee. Expand the
animation for the referee so that he falls down
when he is touched by the ball.

Guidance: The animation of falling can be done
by changing the direction of the referee. This
will occur when the ball touches him.

Program file name: cat-and-dog-kick-referee-falls

Communications Between Sprites 101

Exercise 4

Construct
an animation
of two dogs who
compete to get
a bone. Initially,
the dogs line up and wait for the cat to signal
the start of the race for the bone. The first dog
to arrive at the bone, picks it up and runs away
with it. Ensure that one of the dogs runs faster
than the other so that he will reach the bone
first.

a. Design the animation described above.

Guidance: Decide on initial positions and
directions for the four sprites, using the
illustration above as a rough guide, and
construct the initialization parts of the scripts.
Decide what it means “to run away with the
bone” and write instructions to implement this
action.

Use three messages to control the action: one
from the cat to tell the dogs to start, and one
from each of the dogs to the bone to tell it to
follow that dog. You have to ensure that only
one of the messages is actually sent.

Program file name: get-bone1

102 Chapter 4

b. Modify the project from the previous exercise
to use two messages instead of three: the same
message is sent by both dogs to the bone. It is
now the responsibility of the bone sprite to
ensure that it only follows the dog that touched
it first.

Program file name: get-bone2

c. Can you solve the problem with only one
message that will be sent from the cat to the
two dogs? The scripts of the bone must all start
when the green flag is clicked.

Program file name: get-bone3

Exercise 5

Construct an animation where
four dogs are running a relay
race around the edge of the
stage. Each dog will start in
one of the corners and move around the stage
in a clockwise direction.

a. First write an animation where the four dogs
move continuously around the stage when the
green flag is clicked.

Communications Between Sprites 103

Program file name: relay-race1

b. Now write an animation where the dogs start
moving one by one. Initially, only the first dog
moves. When he is halfway to the second dog,
the second dog also starts moving. When the
second dog is halfway to the third dog, the
third dog starts moving, and similarly for the
fourth dog.

Guidance: A dog sends a message start

moving to the next dog:

1. when I receive the message start moving from the previous dog
2. move halfway to the next dog
3. send a start moving message to the next dog
4. forever

4.1 move around the stage

Program file name: relay-race2

Summary

Concepts

Communication and coordination by messages: Sprites
can communicate with each other and coordinate their
actions by sending and receiving messages: one sprite

104 Chapter 4

broadcasts a message that is received by all the other
sprites. One or more of the receiving sprites can react to
the event of receiving a message by starting to run a script.

Conditional wait: When a conditional wait is run, the
instructions that follow it are not run until the condition is
true. When the condition is true, the following instructions
can be run.

Scratch instructions

Sending and receiving messages: Sending and receiving
messages are Control instructions found in the orange
palette. The instruction causes a message

to be sent to all other sprites. You must name the message

to be sent. The instruction is a

control instruction that can appear only as the first
instruction in a script. When the message is received, the
instructions below it in the script are run.

Conditional wait: The instruction is a

conditional wait instruction. The condition is written in
the small window after the until.

Chapter 5

On the Dance
Floor—Repeated Run
Again

In Chapter 3 we saw how instructions for repeated run can
be used to create very long animations—even infinite
ones—from a finite (often very short) sequence of
instructions. We learned two instructions for repeated run,
both of them for infinite runs. The first, forever , causes
the enclosed instructions to be run forever, while the
second instruction, forever if , also leads to an infinite
run, but one in which the enclosed instructions are run
only if a condition is true. In this chapter, we will study
more instructions for repeated run, but these instructions
will be for finite runs of the enclosed instructions. We will

105

106 Chapter 5

study the instructions through a sequence of animations of
dancing sprites, where each animation displays a more
complex dance.

Example 1
A simple dance—repeated run for a
fixed number of times

Task 1

The dancer moves across the stage in one
direction, then she moves back in the reverse
direction, and finally she stops.

We
want the dancer to move across the stage in one
direction and then back in the other direction.

? What instructions can we use?

One possibility is to simply use two move

instructions, one to move her from left to right
and the other from right to left. However, these
instructions will simply cause her to jump from the initial
position to the final position and this will not look like a
dance. Another possibility is to use the glide instruction;
we explore this possibility in an exercise.

On the Dance Floor—Repeated Run Again 107

Exercise 1

Write a script that implements the solution
suggested above.

Guidance: Open a project and import a new
sprite. You can find an appropriate one in the
folder People. There are several images for the
character Cassy, several of which show her
dancing. Choose the image called
cassy-dancing-3, which shows her with two
outstretched arms, one upwards and one
downwards.

The dancer’s initial position is (−100, 100) with
initial direction 90◦ (pointing to the right). Use
two glide instructions: one to move the dancer
100 steps to the right and another to move her
100 steps back to the left. Use a turn

instruction to change the direction of the dancer
by 180◦ between the first and second glides.

Program file name: dancer-glides

The animation in Exercise 1 will seem strange:
when the instruction turn 180 degrees is run,
the image for the Cassy sprite will rotate 180◦ so
that she is standing on her head! For an
explanation of this behavior and how to change
it, see the Technical note at the end of the

108 Chapter 5

chapter, although you can work through this
chapter without making the change.

Dancing as repeated short steps

The animation that you created in Exercise 1 is nice but the
resulting movement does not really look like dancing. Let
us try a different method: instead of moving the dancer
100 steps in one instruction we will cause her to move in
small amounts, say 10 steps at a time. Between movements
we will have the dancer wait a short amount of time,
1
5 = 0.2 second. We will barely notice the waits, but they
will give the impression of a dance step. Here is a
description of actions that will move the dancer 100 steps
in 10 separate movements of 10 steps each:

1. move 10 steps
2. wait 0.2 seconds
3. move 10 steps
4. wait 0.2 seconds

. . .
19. move 10 steps
20. wait 0.2 seconds

On the Dance Floor—Repeated Run Again 109

The wait instruction

? Do we know the instructions needed to create this
script?

We are already very familiar with the motion instructions,
but we have yet to use the type of wait instruction that we
need. In Chapter 4, we use a conditional wait, which
causes the run to wait until a certain event happens; here,
we need a simpler instruction, a timed wait that causes the
run to wait for a fixed amount of time. The instruction we
need is , the fourth block from the top of the

orange Control palette. This is a general instruction and in
order to turn it into a specific instruction we have to enter
a value into the window; this value is the number of
seconds to wait.

New construct in Scratch: timed wait

The instruction causes the script

to stop running for the period of time specified
in the window. The period is given in seconds
and can be fractional, for example, 0.2 second.
When the period has passed, the run continues
with the next instruction.

In order to move the dancer 100 steps, we can write a
sequence of ten move 10 steps instructions with a wait

110 Chapter 5

0.2 sec instruction between each two move instructions,
altogether twenty instructions. After changing the
direction of the dancer, we again need the same sequence
of twenty instructions. It would be very boring to
construct a script with so many instructions; certainly it
would be extremely difficult if we had been asked to write
a dance with 100 instructions.

Fixed repeated run

What we need is a way to indicate that an instruction or a
sequence of instructions (here, a sequence of the two
instructions move and wait) should be run a fixed number
of times (here, ten times). A written description of the
movement of the dancer in one direction would be:

1. run 10 times
1.1 move 10 steps
1.2 wait 0.2 seconds

The instruction for repeated run is , which

appears as the sixth block from the top in the palette for
Control instructions. This block has a window in which we
enter the number of times that we want the enclosed
instructions to be run. It has a “mouth” that contains the
instructions to be run again and again.

On the Dance Floor—Repeated Run Again 111

Compare this block with the blocks and

that we used in Chapter 3.

? Does block repeat... differ from the blocks for
forver and forever if ?

The bottoms of the blocks for the forever and forever if

instructions are straight; they do not have a bulge that
would allow other blocks to be placed after them. Clearly,
since the infinite run is never going to terminate, it does
not make sense to ask what instruction will be run after it,
so a block for infinite repeated run can only be the last
block in a script. However, a fixed repeated run—where we
know how many times the enclosed instructions will be
run—need not be the last instruction in a sequence of
instruction, so it can appear anywhere within the script.
As you can see, the bottom of the repeat instruction has a
bulge that can fit into the notch in the top of another block.

Construct the part of the script that corresponds to the
written description above, duplicate it and put the two
parts in place of the glide instructions in the script from
Exercise 1. This script now contains two fixed repeated
runs, or, as they are usually called, loops. This term is used
because after the enclosed instructions are run the script
continues by turning back to the beginning of the repeat
instruction. If you trace the run with your finger, it looks
like a piece of rope that loops back upon itself. The

112 Chapter 5

number of turns or loops is determined by the number
given in the window of the repeat instruction.

Write comments for this animation, save the project under
a new name, and click on the green flag to run it.

Program file name: dancer-moves-loop

New concept: fixed repeated run
A fixed repeated run causes a sequence of in-
structions to be run again and again. The num-
ber of runs is fixed in advance and specified in
the instruction.

New construct in Scratch: fixed repeated run

The instruction causes the en-

closed instructions to be run the number of
times that is specified in the window.

In the rest of the chapter, we will expand on this basic
example. Each new animation will be based on the same
approach that we used in Example 1 (breaking down the
dance into small movements with short waits between
them). In the optional sections at the end of the chapter, we

On the Dance Floor—Repeated Run Again 113

will show how to modify the basic dance to obtain a more
dynamic one.

Exercise 2

Add another dancer to the animation. He will
dance in the opposite direction from the first
dancer Cassy, starting at point (100, 100), facing
in the direction left −90◦. He will move 100
steps and then reverse direction and move 100
steps.

Guidance: Choose a different image for this
new sprite, for example, Jay in the People folder.

Program file name: two-dancers-move

Example 2
Until we meet again—conditional
repeated runs
In Exercise 2, we added an additional sprite to the
animation, a second dancer who danced simultaneously
with the first dancer. However, there was no interaction
between the two sprites. They pass one over the other and
their meeting does not affect their motion at all. Now, let
us try to cause some interaction between the two sprites.

Task 2

114 Chapter 5

The two dancers move towards each other.
When they meet, they change direction and
begin moving in the opposite direction.

Program file name: two-dancers-move-until-touch

As before, each of the dancers will move 10 steps at a time
followed by a short wait, but now the change of direction
will not occur after a specific number of runs of this pair of
instructions. Instead, when a meeting of the two sprites
occurs, it will cause each of the sprites to change direction
and to move in a new direction.

Repeated run that depends on the
occurrence of an event

Here, too, we need an instruction for repeated run, but we
don’t want to decide ahead of time on the number of runs
of the enclosed instructions as we did in Example 1.
Instead, we want to terminate the repeated run when an
event occurs, and this event will be a meeting between the
two dancers. Here is a written description of the
movements of the dancer:

1. run until you meet the other dancer
1.1 move 10 steps
1.2 wait 0.2 seconds

On the Dance Floor—Repeated Run Again 115

The first step specifies a conditional repeated run. The end
of the repeated run is not defined by the number of loops
of the instruction, but by the occurrence of an event. Before
running the enclosed instructions, a check is made to see if
the event has occurred. If not, steps 1.1 and 1.2 are run,
and the run returns to step 1, where the event is checked
again. If, at the beginning of the loop, the event has
occurred, then the conditional repeated run (including its
enclosed instructions) is considered to have terminated.

The instruction for conditional repeated run is

, the third block from the end in the

palette of the Control instructions. The block for this
instruction has a notch on the top and a bulge on the
bottom so that instructions can appear before and after it.
As with all repeat instructions, this instruction has
“mouth” to enclose the instructions that are to be repeated.
The window following repeat until has angled ends, which
means that a condition must be placed there. This
instruction is thus similar to the conditions instructions
forever if and wait until until from Chapters 3 and 4.
The condition we need here is the familiar one
touching...? .

116 Chapter 5

New concept: conditional repeated run
A conditional repeated run enables a sequence
of instructions to be run again and again. The
number of runs is not fixed in advance; instead,
the sequence is run until a condition becomes
true.

New construct in Scratch: conditional re-
peated run

The instruction causes

the enclosed instructions to be run until the
condition specified in the window becomes
true.

For each of the two dancer sprites, create the part of the
script consisting of the conditional repeated run
instruction and the enclosed move and wait instructions.
Place these blocks at the appropriate positions within the
script for the two dancers. Write comments for this
animation, save the project under a new name, and click
on the green flag to run it.

On the Dance Floor—Repeated Run Again 117

What happens during the conditional repeated
run?

When the run of one of the scripts reaches the instructions
for conditional repeated run, a check is made if the two
sprites are touching. Since this is not true in the initial state
of the animation, the move and wait instructions enclosed
within the repeat until instruction will be run. Then,
another check is made for the occurrence of the event of
touching the other sprite; again, this does not occur, so
move and wait are run again. This continues until the
check discovers that one sprite has touched another. When
this happens, the enclosed instructions are no longer run;
instead, the run of the script continues with the instruction
that follows the repeat until instruction. In this case, it
is the instruction that changes the direction of the sprite.

Exercise 3

Is it possible that the instructions enclosed by
repeat until are never run, not even once?
Change the script so that the initial positions of
both sprites are the same, for example, the point
(0,100). Click the green flag to run the
animation and explain what happens.

Exercise 4

118 Chapter 5

Consider the second loop of the script for each
dancer which is a fixed repeated run. What will
happen if we change these loops to use the
conditional repeated run instruction? Make this
change to the script and explain what happens.

In Exercise 4, we learned an important lesson about
conditional repeated run. We must be certain that the
condition will eventually become true; otherwise, the
instruction will become an infinite repeated run, and the
instructions that follow it will never be run. This
possibility did not concern us in Chapter 3 because the
repeated runs were intended to be infinite, nor did it
concern us in the example at the beginning of this chapter,
where the number of repeated runs was specified by a
fixed number.

Example 3
Dancing on and on—repeated runs
within repeated runs

Task 3

Modify the animation of the dancers so that the
dance continues again and again, forever (or
until the red stop button is clicked).

That is, we want to repeat the portion of the dance that we
created in Example 2.

On the Dance Floor—Repeated Run Again 119

? How can we do this?

We have already learned in Chapter 3 how to construct an
infinite repeated run. The instruction that we need is

. Recall that within this instruction for infinite

repeated run, we can include an arbitrary sequence of
instructions; in particular, we can include the entire
sequence of instructions for the dance from Example 2.
The sequence of instructions for the dance itself contains
two instructions for repeated run, in this case conditional
repeated runs.

? Can these instructions be included within an infinite
repeated run?

Yes, why not? However, we have to be careful when we
put the two together.

Let us look again at the script in Example 2 for the dancing
girl. Which part of this script should be included in the

infinite repeated run instruction ?

? Should the first instruction when green flag clicked be
included?

Of course not! Clicking on the green flag should be done
once at the beginning of the script, not every time the
dancer begins her movements. In fact, the top of the block
for this instruction does not have the notch that would
allow it to be placed within a sequence of instructions; it

120 Chapter 5

can only appear as the first instruction in the sequence.

The next two instructions are used to initialize the dancer
sprite—to place her in her initial position facing in her
initial direction.

? Should these instructions be run repeatedly?

Again, the answer is no. The word “initialization” means
that these instructions prepare the sprite for the dance, but
they are not part of the dance itself. There is no need to
initialize the sprite more than once.

The dance that
we want to run repeatedly
is described by the
rest of the script that begins
with the first conditional
loop and continues until the
end of the script. Therefore,
all we have to do is enclose
this part of the script within
the block for the infinite run
instruction forever. Drag this block from the orange
Control palette until its top is between the initial
instructions and the first loop; its “mouth” will open and
enclose the rest of the script.

Exercise 5

Make this change in the scripts for the two

On the Dance Floor—Repeated Run Again 121

dancers. Click the green flag and explain what
happens.

Program file name: dancers-disappear

Analyzing the problem

The change did not lead to the animation that we expect.
In order to understand what happened, let us follow the
run of the script step-by-step:

• At the beginning, each of the sprites turns to its
initial direction, the boy dancer to the left and the girl
dancer to the right.

• They perform their first dance, moving toward each
other until they touch.

• As a result of the meeting, they change their
directions and continue the dance.

• Now, the forever instruction causes the first
conditional repeated run to begin again; the dancers
will continue to move until they meet again.
Unfortunately, this will never happen, because the
dancers continue to move in the directions they
moved in during the second part of the dance. In
Scratch, whenever the sprite tries to move off the
stage, it remains partially visible at the edge. This is

122 Chapter 5

similar to what happened in Exercise 4: since the
meeting never occurs, the run is infinite, although we
never intended for it to be infinite.

Trying to fix the problem

How can we solve this problem? We have to add
additional instructions for changing the directions of the
dancers before they begin the repeated run of the first part
of the dance. Clearly, the correct instruction to use is

, the same instruction that we used
between the two parts of the dance.

? Where shall we place this instruction?

There are two possibilities. As we have seen, the problem
occurs before the dancers return to run the first part of the
dance. Therefore we can place the turn instruction either
before the first part of the dance or after the second part of
the dance, just before the end of the infinite repeated run
instruction:

On the Dance Floor—Repeated Run Again 123

It doesn’t appear that there should be any difference
between placing the instruction in either of these two
places, because the beginning of the first part of the dance
is run immediately after the end of the second part of the
dance. Place the turn instruction before the first part of
the dance so that it will be run immediately after the
initializations of the dancers. Click the green flag and see
what happens.

The problem appears again: the position of the
turn instruction is important

The change in direction changed the direction that was set
during the initialization. As a result, the dancers move
away from each other and the event of their meeting will
no longer occur. Therefore, we choose the second
possibility, and place the turn instruction that reverses the
direction after the second part of the dance. We now know

124 Chapter 5

that this instruction will not be run immediately after the
initial direction has been set. Add this instruction to the
script and check that the animation is what we expect.

Update the comments for this project and save it under a
new name.

Program file name: dance-indefinitely

In this example, we have seen that one repeated run
instruction can enclose another, but this has to be done
carefully and we have to check that the resulting script
results in the animation that we want.

New concept: nesting of repeated run instruc-
tions
A repeated run instruction of any kind can
enclose arbitrary instructions, including other
repeated run instructions. When this occurs,
we say that the repeated run instructions are
nested.

Possible combinations of infinite
repeated run

? Are all combinations of repeated run instructions
possible?

On the Dance Floor—Repeated Run Again 125

? Can an infinite repeated run be placed within another
repeated run instruction?

The answer is no. There is
no point in placing an infinite
repeated run instruction
(with or without a condition)
within another repeated
run instruction, because it
will never end; therefore, the
instructions that come after it
will never be run. Even if the
infinite repeated run instruction is the last instruction
within another repeated run instruction, it will not be
possible to return to the start of the containing instruction
and run the other instructions. The action specified by the
script on the right would be exactly the same if the outer
repeat... were removed.

Example 4
Becoming a
choreographer—controlling the dance
In the animations we have created so far, the sequence of
movements has been specified in advance. The person
watching the animation has no influence on what will
happen and can only watch the animation like a movie.
Interacting with the computer—as in a computer
game—can often be more interesting than just watching a
movie.

126 Chapter 5

Task 4

Modify the animation so that you can influence
the movements of the dancers. They will still
dance back and forth, but the direction of the
dance will not be controlled by an event (the
two dancers meeting) or by a number (the
number of steps taken), but by a command that
you will give:

• When the girl dancer moves right, she will
continue in that direction until you press
the left arrow key. When she is moving left,
she will continue to do so until you press
the right arrow key. When a key is pressed
her direction changes by 180◦.

• The boy dancer will move up and down
the stage instead of left and right. When he
moves down, he will continue in that
direction until you press the up arrow key.
When he is moving up, he will continue to
do so until you press the down arrow key.
When a key is pressed his direction
changes by 180◦.

Program file name: user-controls-dance

Here is a description of the first part of the girl’s dance:

On the Dance Floor—Repeated Run Again 127

1. run until the left arrow key is pressed
1.1 move 10 steps
1.2 wait 0.2 seconds

and here is the description of the second part:

1. run until the right arrow key is pressed
1.1 move 10 steps
1.2 wait 0.2 seconds

As you can see, the instructions within each loop are the
same as before, but the repeated run instruction is
different. Both of them must be conditional repeated run
instructions repeat until, where the condition is no longer
that of touching another sprite but of a key being pressed.

Responding to a key press

The condition we need is , the ninth
block from the top in the light blue palette Sensing. Click
on the small arrow in the window to choose which key will
be sensed. For the first condition choose the left arrow and
for the second condition choose the right arrow. Make
these changes in the script for the girl dancer.

128 Chapter 5

New construct in Scratch: sensing a key press

The condition is true if the
user is currently pressing a key and it is false
if the user is not pressing a key. The key
that is sensed must be specified by choosing it
from the menu that appears when the arrow is
clicked.

The movements of the boy dancer

We chose two different keys—the up arrow key and the down
arrow key—for controlling the boy dancer; otherwise, both
dancers would respond to the same event. The boy dancer
will have his initial direction downwards 180◦. In the first
part of the dance he will move downwards and then, after
turning 180◦, he will move back up the stage. The loops for
the two parts of the dance are similar to those for the girl
dancer:

1. run until the up arrow key is pressed
1.1 move 10 steps
1.2 wait 0.2 seconds

1. run until the down arrow key is pressed
1.1 move 10 steps
1.2 wait 0.2 seconds

On the Dance Floor—Repeated Run Again 129

Make these changes, click on the green flag and check that
the animation works as we wanted to. Add comments to
the scripts and save the project under a new name.

Exercise 6

Construct an animation with three sprites: an
elephant, a horse and a cow. When the green
flag is clicked they move to their initial
positions one above the other near the left edge
of the stage and pointing to the right 90◦.

a. Following initialization, each animal moves
to the right in 60 movements of 5 steps each.

Program file name: fixed-run

b. Modify the animation so that each animal
has a key associated with it (left arrow for the
horse, right arrow for the cow, up arrow for the
elephant). Following initialization, each animal
moves to the right until its associated key is
pressed.

Program file name: play-run1

c. Construct an animation whose behavior is
opposite to the previous animation. Following
initialization, each animal moves only when its

130 Chapter 5

associated key is pressed. When the key is
released, it stops moving. If you press the key
again, the movement will start again.

Program file name: play-run2

d. Combine the two previous animations.
Following initialization, each sprite starts to
move and stops when its key is pressed. If the
key is pressed again, the sprite will start to
move again, and so on.

Guidance: You may need to add wait
instructions so that you will have time to press
and release a key.

Program file name: play-run3

Additional material on Scratch:
Changing costumes

Realistic animation

The basic dance animation that we have constructed in this
chapter is lacking an essential aspect: although we see
movement and this movement reminds us of a dance
(because of the short waits between each step), the moving

On the Dance Floor—Repeated Run Again 131

sprite always looks the same with its arms and legs always
in the same position. A more believable animation of a
dance would have sprites continuously change their
appearance. In animated cartoons, this is done by creating
several, slightly different, images that are quickly shown
one after the other, thus giving the appearance that the
character is moving. For example, to show that a character
is walking, the animators draw several images of the
character with its legs and arms in different positions and
then these images are displayed in quick succession.

132 Chapter 5

Task 5

Modify the animation from Example 3 so that
the dance is more believable. The sprites should
change their appearance while they are moving.

Program file name: dancers-change-costumes

There can be more than one costume for each sprite. In
Chapter 2 we showed how to import a new costume for
use by a sprite and how to modify a costume using the
Paint Editor. When a script is run, we can include
instructions that change costumes.

We will show how
this is done for the
girl dancer. In the middle panel of the Scratch window,
click on the middle tab Costumes. The girl dancer has only
one costume, which is marked with a blue border
indicating that this is the active costume. Above the
costume, you will see the words New costume: followed by
three buttons, one for creating a new costume by using the
Paint Editor, the second to Import a costume that already
exists on the computer, and the third for importing a
costume from a Camera.

Add a new costume for the dancer by clicking
on the button Import and selecting a new costume
from the folder People; for example, choose
the costume cassy-dancing-1 and click OK. You will

On the Dance Floor—Repeated Run Again 133

now see two costumes for the dancer; the second
one has a blue border indicating that it is the active
costume. By clicking on the icon for a costume you
can make it the active costume; try this and you will see
that the blue border changes, as does the image of the
sprite on the stage.

New construct in Scratch: adding a costume to
a sprite

Additional costumes can be added to a sprite.
Select the Costumes tab above the script area and
create the new costume either by: drawing it
using the Paint Editor, importing from a file, or
transferring an image from a digital camera.

Instructions for changing costumes

We now show how to change between costumes during
the dance. Choose the purple palette Looks and you will
see that the first two blocks contain instructions that
change the costume. The first one
changes changes the costume of the sprite so that it is
displayed with the costume that you can choose by
clicking on the arrow in the window within the block.

134 Chapter 5

New construct in Scratch: changing to a
specific costume

The instruction
changes the costume that the sprite is dis-
played with. The costume is specified by
choosing from the menu that appears when the
arrow in the window is clicked.

The second instruction is simpler; it
simply changes the costume of the sprite to the next one in
the list in the center panel. For example, if there were four
costumes and the current one (with the blue border) is the
second one, then running the instruction next costume

would cause the third costume to become the current one.
Running the instruction again would cause the fourth
costume to become the current one, and running it yet
again would cause the first costume to become the current
one, since the first costume is considered to be the one after
the last costume.

On the Dance Floor—Repeated Run Again 135

New construct in Scratch: changing to the next
costume

The instruction changes the
costume that the sprite is displayed with to the
next costume, where the “next” costume is the
one that appears after the current on in the cos-
tume panel. If the current costume is the last
one, then the “next” costume is the first one.

? Are these two instructions absolute or relative
instructions?

The instruction is an absolute
instruction because it changes the costume to a specific
new one without considering what the current costume is.

The instruction is a relative instruction
because the new costume depends on the current one.

Creating an animation effect by changing
costumes

Let us use the instruction to cause the

dancer to change her appearance again and again during
the dance.

? Where shall we place this instruction?

136 Chapter 5

Since the dance is constructed from repeated runs of a
short sequence of two instructions (move and wait), we
can add the next costume instruction to this sequence. Do
this for both parts of the dance.

Since we are changing costumes during the dance, it is
important to specify an initial costume for the sprite, just
as we needed to specify an initial direction for the sprite
when we change direction during the dance. Otherwise, if
we run the animation several times, different costumes
could appear depending on where the previous run of the
animation was stopped (by clicking the red stop button
next to the green flag). To initialize the costume we will
use the absolute instruction . Click
on the arrow and choose one of the costumes of the dancer
to be the initial one.

Click on the green flag to run the animation, stop it and
start it again to check that it always starts with the same
costume.

Exercise 7

Make a similar change for the boy dancer. The
sprite that we have chosen for this dancer (jay)
has only one costume in the folder People.
Change the sprite by deleting the jay costume
and by adding two costumes dan1 and dan5.
Make the appropriate changes in this script for
the boy dancer, add comments and save the
project under a new name.

On the Dance Floor—Repeated Run Again 137

Additional material on Scratch: Adding
background sounds

The Scratch environment supports the use of sounds. They
can be associated with sprites or with the background.
Here we explain the use of sounds in the context of
background sounds.

Task 6

Add music to the animation of the dance in
Example 3.

Program file name: dance-with-music

Select the stage image
in the sprite panel in the
lower right-hand corner of
the Scratch window. In the script area click on the tab
Sounds tab. The sounds that participate in the animation
will appear here and initially there will be none, unlike the
costumes for the stage where there is a default white
background. To add a new sound you can Import it from
the library of sounds that is supplied with the Scratch
environment, or you can Record your own sound by using
a microphone that is connected to the computer.

138 Chapter 5

Once the sound has
been added to the
list, it can be chosen
as a background
sound. Click on the Import button to import a sound and
choose the folder Music Loops. Click on the entry
GuitarCourds2 in the list that appears, and the computer
will play the sound so that you can be sure that this is the
sound you want. Click OK. The sound will appear in the
list of sounds that can participate in the animation.
Underneath its name is written the length of the sound
(here 7 seconds), and there are buttons for playing the
sound, stopping the sound, and erasing the sound from
the list.

New construct in Scratch: adding sounds

To add a sound click on the Sounds tab in the
script area. Sounds can be imported from files
in many formats such as (wav and mp3). You
can also record a sound from a microphone at-
tached to the computer.

Specifying the background sound

Now that the sound appears in the list, it can be used as a
background sound. Since the stage is responsible for the

On the Dance Floor—Repeated Run Again 139

background sounds, we have to create a script for the stage
that will cause the sound to be played. Click on the Scripts
tab. For the stage, the set of blocks of instructions that can
be included in the scripts is different from the set of blocks
that you already know about from writing scripts for the
sprites. In particular, the blue Motion palette is empty,
because the background cannot move! Similarly, the light
blue Sensing palette does not have blocks for the condition
touching...? , because the background is always
touching all the sprites, as well as the mouse cursor.

Select the dark pink palette Sounds. The first two
instructions cause sounds to be played. The first
instruction causes the sound to begin
playing and the run continues immediately with next
instruction, while the second instruction

causes the sound to be played
until it ends, and only then does the run continue with the
next instruction. Both instructions have a window with an
arrow that you use to choose which sound will be played.

140 Chapter 5

New construct in Scratch: playing sounds

The instructions and

cause the sprite or
the background to play the sound whose name
appears in the window. A script containing the
first instruction continues running as soon as
the sound starts to play, while a script contain-
ing the second instruction stops running until
the sound has finished playing.

Drag the second instruction, play sound GuitarChord2

until done, and drop it in the script area for the stage. The
window will already show the sound GuitarChord2

because that is the only sound that appears in our list of
sounds. Add the instruction when green flag clicked as the
first instruction in the script. Click on the green flag and
you can hear that the sound is played at the same time that
the two dancers move on the stage. However, it is hard to
call this a background sound, because after 7 seconds the
sound is finished and the animation becomes quiet.

? How can we ensure that the background sound will be
played continuously?

We have to cause the sound to be played again and again,
as long as the dance continues. Since the dance of both
dancers is controlled by an infinite repeated loop, the
sound, too, should appear in such a loop. Enclose the block

On the Dance Floor—Repeated Run Again 141

play sound GuitarChord2 until done within an infinite
repeated run instruction. Click the green flag and check
that the sound is played as long as the dancers dance. Add
comments to the project and save it under a new name.

Changing the sound during the
animation

The background sound does not have to remain the same
throughout the animation. Let us use two play

instructions for different sounds. If the instructions are
enclosed within an infinite repeated run instruction, the
two sounds will alternate indefinitely. We will do
something else; we will change the sound as the result of
an event that occurs during the animation.

Task 7

Modify the animation so that the background
will play one sound when the two dancers
move towards each other and another sound
when they move away from each other.

Program file name: dance-change-music

142 Chapter 5

Using communication to indicate that the
sound should be changed

The two dancers must communicate with the stage in
order to inform the stage whether they are moving
towards each other or away from each other. The stage
then uses this information to decide which sound to play.
Two messages will be used: one for moving towards each
other and the other for away from each other.

It is
not necessary for both dancers
to broadcast these messages
since their movements
are already coordinated; that
is, we have already arranged it
so that either both dances move
towards each other or they
move away from each other at the same time. Let us
arbitrarily decide that the girl dancer will be responsible
for sending the messages. The dancer will send a message
moving closer before the first dancing loop and a message
moving away before the second dancing loop.

Changing the music after receiving a message

Now we have to change the behavior of the stage so that it
can receive the messages and change the sound that is
played. As explained in the previous chapter, the

On the Dance Floor—Repeated Run Again 143

instruction for receiving a message has to be the first block
in any script. Therefore, we will replace the block when

green flag clicked with the block

.

? What about the second message moving away?

You will need a separate script for receiving the message
moving away. It will be the same as the script for receiving
moving closer except that it will play a different sound,
for example, GuitarChord1. Run the animation.

? Does it do what you expected?

Analyzing the problem

The result sounds terrible because the sounds partially
overlap. The reason is that the instruction

appears in two different scripts.
The run of each script stops while the sound is being
played and waits until it is finished. However, it is possible
for the dancer to send the message moving closer and
before seven seconds are up, the dancers meet and move
away, causing the girl dancer to send the message moving

away. The two sounds will be played at the same time.

To solve this problem, each script should stop the playing
of sounds before it begins playing its own sound. This can
be done with the instruction , the third block
from the top in the dark pink Sounds palette. Place this

144 Chapter 5

instruction before each play instruction. Check if the
animation does what you expect. Add comments to the
project and save it under a new name.

New construct in Scratch: stopping all sounds

The instruction causes all sounds
to stop playing immediately. This includes all
sounds that are being played in all the scripts
both of the background and the sprites.

Exercise 8

So far we have shown how the background can
play sounds. In this exercise, you will have
several sprites (a drum, a guitar and a trumpet)
play sounds. The instructions for playing the
sounds will appear in the scripts for the sprites.

a. Construct an animation in which each
instrument plays its own tune 5 times.

Program file name: fixed-tune

b. Modify the animation so that the instruments
play their tunes until an appropriate key is
pressed. Choose a key for each of the

On the Dance Floor—Repeated Run Again 145

instruments; for example: left-arrow for the
drum, right-arrow for the trumpet and
up-arrow for the guitar. You might have to keep
the key pressed for a while before the
instrument stops playing. Why is that?

Program file name: play-tune1

c. Modify the animation so that the instruments
don’t play their tunes until an appropriate key
is pressed. An instrument plays its tune as long
as its key is pressed and stops when the key is
released. Pressing the key again will cause the
tune to start again.

Program file name: play-tune2

d. Modify the animation from exercise b: The
instruments start playing when the green flag is
clicked and they stop when an appropriate key
is pressed. However, pressing the key again
will cause the tune to start again. You may want
to add wait instructions so that the user has
sufficient time to press a key and release it.

Program file name: play-tune3

146 Chapter 5

Summary

Concepts

Finite repeated runs: In fixed repeated run, the number of
runs is specified in advance as a certain number, while in
conditional repeated run, the loop is run until a specific
event happens or until a condition becomes true. When
using a conditional repeated run, we have to make sure
that the event actually happens so that the run does not
become infinite.

Nesting instructions: It is possible to include one type of
repeated run within another, except that an infinite repeated
run cannot be included within any other repeated run.

Timed wait: A script can be made to stop running for a
specified amount of time.

Interaction with the user: The user can interact with a
program by using the keyboard. The program can find out
which key was pressed and modify its run depending on
the key.

Changing costumes: A sprite can have several costumes
and the costume can be changed during the animation.

Sounds: Sounds can be played during the running of a
project.

On the Dance Floor—Repeated Run Again 147

Scratch instructions

Finite repeated runs: Fixed repeated run is implemented

by the instruction . The number of runs is

entered in the small window.

Conditional repeated run is implemented by the

instruction . The window must

contain a condition.

Waiting: The instruction causes the script

to stop running for a period of time expressed in seconds
(including fractions of seconds).

Interaction with the user: The condition
is true when the user has pressed the key specified in the
window.

Changing costumes: Add a costume to the animation by
selecting the Costume tab and painting the costume or
importing it from a file or a digital camera. The absolute
instruction changes the costume to

the one specified in the window. The relative instruction
changes to the next costume in the list in

the script panel.

Sounds: Sounds can be played by the background or by a
sprite. The Sounds tab is used to add sounds to the project.
Instructions for sound appear in the dark pink palette:

148 Chapter 5

Technical note: turning an image

Scratch
enables you to
limit the way
that a sprite
responds to turn and point instructions. Look at the area
above the script area. So far you have used this only for
changing the name of the sprite, and you may have
noticed that it displays the current position and direction
of the sprite below the name. To the left of the icon for the
sprite, you will see three buttons. By default, the upper
button with a round arrow is selected. This allows the
sprite the rotate through a full circle 360◦ like a gymnast
doing cartwheels. If you click the middle button with the
two-way arrow, then the sprite always stands upright and
can only spin 180◦ like an ice skater or a dancer. Click this
button for the dancing sprites in this chapter. The third
button causes the sprite to ignore all turn and point

instructions.

Chapter 6

Remembering
Things—Variables

In this chapter we will develop a simple game in order to
introduce variables, which are used to remember values
and to change values that were previously stored. The
values can represent, for example, the number of points
that a player wins in a game.

Example 1
The growing and shrinking
dragon—changing the size of a sprite
In the first
example the user
will not participate;
instead, we only

149

150 Chapter 6

demonstrate how to
change the size of a
sprite. We will work
through the example using a specific sprite. Let us choose
the image dragon1-a found in the folder Fantasy.

Task 1

Construct an animation with one sprite, a
dragon. When the green flag is clicked, the size
of the dragon will be reduced by one half.

Program file name: change-to-half-size

The behavior of the dragon sprite is as follows:

0. when the green flag is clicked
1. reduce the size of the dragon to one half of its full size

Initializing the size

? Does this project need initialization?

When the project is constructed by importing the image for
the dragon sprite, the size of the sprite is its original size.
The first time that we run the script, the size is reduced;
however, the second time the script is run, the size of the
sprite is already half of its original size, so we see no
change! Therefore, we must initialize the size of the sprite
to its full size so that we can see that it is in fact reduced to
the half-size:

Remembering Things—Variables 151

0. when the green flag is clicked
1. initialize the size of the dragon to its full size
2. reduce the size of the dragon to one half of its full size

In Scratch, every sprite has a size and there are instructions
that can change the size. Blocks for instructions that
change the size can be found in the purple palette Looks:

• is a relative instruction that changes
the current size to a new size by adding a value.

• is an absolute instruction that
changes the size to a new size without taking the
current size into account.

Step 1 can be expressed in Scratch using the instruction
, while step 2 can be expressed using the

instruction .

New construct in Scratch: setting and chang-
ing the size of a sprite

The instruction changes the
current size of a sprite to a new size by adding
a value.
The instruction changes the
size of a sprite to a new size that is a percentage
of its original size when it was imported into
the project.

152 Chapter 6

It is worthwhile waiting a bit

Create a script that implements the description given
above and run it by clicking on the green flag.

? What happens?

The first time that the script is run, we see the dragon
reduced in size, but if we click the green flag again,
nothing seems to happen. The reason is that the size of the
dragon is reduced immediately after it is set to its full size,
so we don’t have a chance to see it at full size after the
initialization. In order to see the change, introduce a short
wait between the two steps:

0. when the green flag is clicked
1. initialize the size of the dragon to its full size
2. wait 2 seconds
3. reduce the size of the dragon to one half of its full size

Update the script to implement this behavior and run it.

? Is the new image half the size of the original one?

Displaying the size of the dragon

Since we never see dragons in real life, it is hard to tell
when the sprite is at its original size and when it is at half
its original size. It would be nice if the numeric value of
the sprite’s size were displayed on the stage. In the purple
palette Looks, just below the block for set size to...% ,

Remembering Things—Variables 153

is a reporter block . Click on the square box next to
the reporter block: . You will see that the value of
the size of the sprite is displayed in the upper left hand
corner of the stage. This display is called a monitor. If you
wish to remove the monitor, simply click again on the
square to the left of the reporter block.

With the reporter block checked, click on the green flag
and note that the monitor correctly reports the size of the
sprite: initially 100 and two seconds later 50.

Write comments for your project and save it with an
appropriate name.

The optional section on mouse modes in
Chapter 2 explained how to directly change the
size of a sprite using the grow and shrink
buttons (the two right buttons on the toolbar
above the stage . Try changing the
size of the sprite using these buttons and check
that the monitor always displays the current
size.

154 Chapter 6

Example 2
The size of the dragon changes to the
value of a variable
In the first example, we showed how the size of a sprite
can be set and changed within a script. At the end of the
example, we noted that you can change the size directly by
clicking on the image on the stage, although it is difficult to
give the sprite a specific size. Now we would like to enable
the user to set the size of the dragon to a specific numerical
value.

Task 2

Modify the animation so that the user can
supply a numerical value for the size of the
dragon.

Program file name: change-to-smaller-size

We need a way to remember a value and then to use that
value in the instruction . Places to
remember information are called variables. You can create
a variable to remember the size of the dragon; then, you
can store a value in the variable. Once the variable stores a
value, you can use the value for any purpose, for example
to change the size of the dragon using the instruction set

size to ... % .

Remembering Things—Variables 155

Suppose that you want to store some money.
You can use a box and put the money into the
box. You can also look into the box and see how
much money you have. A variable is like this
box: if you have a value such an amount of
money you can store it in a variable and you
can look into the variable to see how much
money you have.

Be careful, though, because there are differences
between a real box and a variable. You can add
and remove money from a real box, but for a
variable there are only two actions that you can
do: store an entirely new value into the variable
(using an instruction like set size to...%) or
read the value that the variable contains (using
a reporter like size). When you read the value
of a variable, the contents of the variable are not
changed.

New concept: variables
A variable is a memory cell that can remember
a value. A value can be stored in a variable,
which remembers the value until it is changed
by a later store. The current value within a vari-
able can be read.

156 Chapter 6

Creating a variable

The instructions relating to variables are displayed in the
red-orange Variables palette. Initially, there are two
buttons in this palette and .

Unlike the objects in the other palettes, these are buttons
that the user can click on, not blocks that can be used in
scripts. They are not colored and they don’t have shapes
like blocks. Only after clicking one of these buttons will
“real” instructions that operate on variables and lists
appear. (Lists will be discussed in Chapter 9.)

Click on the button . A window pops up and
asks you for the name of a variable. Choose a name such as
s and write the name in the window. Click OK to create the
variable.

You can also choose if you want this variable to
be used by all sprites or by only one sprite.
Although our current project has only one
sprite, we will later add other sprites, so leave
the choice For all sprites unchanged.

If this is the first variable in the project, the button Delete

variable will appear beneath the button for Make a

variable . Use this button if you accidentally create a
variable that you don’t need. For example, if you want to
change the name of a variable, you will have to delete it
and make a new variable.

Remembering Things—Variables 157

Once a variable is created, several new blocks will appear
underneath the buttons. This first is a block with rounded
ends that is labeled with the name you gave for the
variable and to its left a small square . This is a
reporter block that represents the variable (just like the
reporter for size that you learned about above). Click the
square box to cause a monitor for the variable s to appear
on the stage. If the monitor appears, you can remove it by
clicking again on the square box.

The block for size represents a variable that
stores the size of the sprite, and is set and
changed by the Scratch environment. You can
read its value and but you cannot change it
directly. It displays the actual size of the sprite.
The block for s represents a variable that you
created; what you do with it is up to you.

158 Chapter 6

New construct in Scratch: creating a variable

Clicking the button causes a new
variable to be created. You must give a name
to the variable and you decide if it is to be ac-
cessible to all sprites or only to this one. When
the variable has been created, a reporter block
appears in the palette.
When the first variable in a project is created, a
number of new instruction blocks appear in the
Variables palette; these are discussed below.

New construct in Scratch: displaying the
value of a variable

The value of any variable (including internal
variables created by Scratch itself like size) can
be displayed in a monitor on the stage. In the
palette, there is a small square next to each re-
porter for a variable. Clicking on the square
causes a check mark to appear or disappear;
when the check mark appears, the monitor is
displayed on the stage. The monitor can be
dragged and dropped anywhere on the screen.

Remembering Things—Variables 159

Storing values into a variable

? How can you change the value of the variable s?

One way of changing the value of a variable is to use a
graphical icon to scroll through a range of values just like
you scroll through a web page that is too large to fit on the
screen. The icon used is called a slider.

Right-click on the monitor that
appears on the stage and select slider

from the menu that pops up. The
variable will be displayed with a
slider below the name and value of

the variable: . By changing the position of the

knob on the slider you can change the value of the
variable. Recall that a variable can contain only one value
at a time, so every time you move the slider, the new value
is remembered and the old value forgotten.

To move the slider, place the mouse cursor on
the knob, click the left mouse button and hold it
down. As you move the mouse left and right,
the knob on the slider moves and with it the
value of the variable.

160 Chapter 6

New construct in Scratch: sliders

Right-clicking on the monitor for a variable will
cause a menu to appear; select slider. The value
of the variable can be changed by dragging the
knob on the slider left or right. The current
value is continuously displayed in the monitor.

Reading and using the value of a
variable

Let us now change the behavior of the dragon so that the
final size of the dragon can be controlled by the user. This
size will be the value of the variable s as set by the user
with the slider:

0. when the green flag is clicked
1. initialize the sprite to its original size
2. wait 2 seconds
3. set the size of the sprite to the value of the variable s

The instruction can be used to implement
step 3.

? But how do we cause it to use the value of the variable
s?

Remembering Things—Variables 161

Previously, we entered values into instructions in one of
two ways. For some instructions like we

typed a number in the small window; for others like

we clicked on the arrow to select

a value from a menu.

In addition, there were cases where a value was obtained
from another block. For example, in Chapter 4, we used the
block , where the condition was another

block . The shape of a block determines
where it can be used. The block for the condition
touching...? has angled ends and therefore it is legal to
place it in the window of the wait until block that also
has angled ends.

For the block , the rounded shape of the
window means that any value block can be used. If you

look at the block for the variable , you will see that it
also has rounded ends (in fact, since the variable name is
so short, the block looks like a circle). Drag this block and
drop into the window of the set size instruction. We obtain
the instruction which means:

set the size of the sprite to the current value of
the variable s.

Run the script several times by clicking on the green flag,
but before clicking, change the value of s by dragging the

162 Chapter 6

slider on the monitor for the variable. Check that the
dragon is first displayed at its original size and then 2
seconds later at the size corresponding to the current value
of the variable. Write comments for your project and save
it with an appropriate name.

Reading the value of a variable does not change
the value that is stored there. It is like using the
value of a telephone number written on a piece
of paper; the number remains there until it is
erased.

Changing the limits of the slider

By changing the value of the variable s, we have managed
to make the dragon smaller than 100% of its original size.
But everyone knows that dragons are very big!

? How can the user make the dragon bigger than 100% of
its original size?

The user can change the limits
of the range of the slider. Right
click on the slider. The menu
has the entry set slider min and

max. Select this entry and enter
200 for the Max of the slider
and click OK. The slider will now let the user enter values
from 0 to 200. Set the slider to 200 and click the green flag.
Add a comment to the project and save it with a new name.

Remembering Things—Variables 163

Program file name: change-to-new-size

New construct in Scratch: setting the limits of
a slider

Right-clicking on the monitor for a variable will
cause a menu to appear. Select set slider min and

max to enter the values for limits of the slider.

Repeated variation of the size of the dragon

Our project still isn’t realistic, because you have to set the
size using the slider before clicking the green flag to start
the animation. In many computer games, you are allowed
to change values at any time when the program is running.

164 Chapter 6

Task 3

Modify the animation so that the size of the
dragon can be changed as often as you want by
moving the knob on the slider.

Program file name: change-size-repeatedly

Exercise 1

Plan the modifications needed for Task 3 and
change the scripts as needed. Document and
save the project.

Guidance: Choose an appropriate control
instruction.

Example 3
Adding buttons to the game
The project that you developed in the exercise allows the
user to change the size of the dragon. Suppose now that
you wish to return the size of the dragon to its original
value 100%. You could do this by carefully dragging the
slider for s so that its value becomes 100. However, it
would be easier if there were a single button to click that
could return the value of s to its initial value.

Task 4

Remembering Things—Variables 165

Add a Reset button to the game. Clicking on
this button causes the dragon to be displayed at
its original size.

Program file name: change-size-with-reset

Even though the button is not an animated character and
will not move on the stage, it still has to be defined as a
sprite in order to respond to the event of being clicked on.
The sprite behaves according to the following description:

0. when Reset clicked
1. change the value of the variable s to 100

Since the script for the dragon sprite sets its size to the
value of the variable s, changing this value in the script for
the button sprite will cause the dragon’s size to return to
100%. It will also set the slider position to 100 so that
additional changes start from there.

The project archive accompanying this book contains a file

reset-button.gif with the image that can be used for

the reset button. To make the button sprite, create a new
sprite by clicking on the middle button of the toolbar

and selecting this file. If you
are curious to learn how we created the image for the Reset
button, you can read the following description; otherwise,
you can continue below with the development of the script
for the button.

166 Chapter 6

Initially, create the sprite for the Reset button
by importing the button image from the Things

folder. The button is blank so we need to add a
label. Click on the Costumes tab in the middle
panel and then click on the Edit button to run
the Paint Editor. You will see the image of the
blank button.

Click on the icon T (the second in the lower row
of tool icons in the left middle of the Paint
Editor screen). T stands for Text and you can
now enter the text that will label the button.
You will see two new images on the screen: a
vertical blue line and a small black square. The
blue line is a cursor for entering the text that is
just like the cursor you are familiar with from
using a word processor or entering text in your
web browser.

Type in the word Reset; if you make a mistake,
correct it using the arrow keys and the delete
and backspace keys. The word that you type
may not be exactly where you want it—in the
center of the image for the button. The small
black square can be used to drag and drop the
entire line of text: Bring the mouse cursor to the
black square, press the left mouse button and
hold it down; now you drag the text to its
correct position and release the mouse button to
drop it into place. Click on OK when you have

Remembering Things—Variables 167

finished editing the button image.

Now that we have a costume for the button sprite, let us
construct the script that corresponds to the description
above. The first step is when Reset clicked, which is similar
to when green flag clicked and when message received, that is,
the instructions are to be run when an event occurs.

The instruction (the third block from the
top of the orange Control palette) is shaped just like the
block when green flag clicked so that it can be used only as
the first block in a script. The meaning of the block is that
the blocks that follow it in the script are run only when the
sprite Reset is clicked.

New construct in Scratch: responding to the
event of clicking on a sprite

The instruction exists in the
palette of every sprite with the name of the
sprite appearing between when and clicked.
The instruction can only appear as the first
block in a script. The script is run when the
sprite is clicked.

168 Chapter 6

Changing the value of a variable

Step 1 above requires that the value of the variable s be
changed by the script and not by dragging the slider or
typing a value on the keyboard. To do this we use the
absolute instruction , which is the first
block in the red-orange Variables palette that contains an
instruction.

The first window must to be replaced
by the name of the variable whose
value we want to change. Since the
names of all the variables in a project
are known to Scratch, they are listed in a menu which can
be opened by clicking on the arrow in the window. (Since
there is only one variable in the current project, its name
will already appear in the window.) Enter in the second
window the new value that you want the variable to have
by clicking in the window and typing the value. Check
that the project works as required. Save the project under a
new name after you write comments explaining the
changes you made.

Remembering Things—Variables 169

New construct in Scratch: setting the value of
a variable

The instruction is an absolute
instruction that sets the value of the variable se-
lected in the first window to the value that ap-
pears in the second window.

If you want to change the current value of a variable, you
can read the current value, change the value and then set
the variable to this new value. Since this action is
frequently done, Scratch provides a shortcut: an additional
instruction that performs this action. The instruction

adds the value in the second window to
the current value of the variable selected in the first
window. If you want to subtract a value, simply add the
negative of the value: change s by -4 subtracts 4 from s.

New construct in Scratch: changing the value
of a variable

The relative instruction that
adds the value in the second window to the cur-
rent value of the variable selected in the first
window.

When we compared a variable to a box
containing money, we said that you have to

170 Chapter 6

store an entirely new value in a variable, unlike
the real box where you can add or remove
money. The change...by... seems to allow
that but it is best to think of this instruction as
described above: a shortcut for reading the
value of a variable and then setting it to a new
value.

Copying a value from one variable to
another

Suppose that we have found an ideal size for our dragon,
but we want to experiment a bit more with the size before
making a final decision.

Task 5

Add two buttons to the animation:

Clicking the button Save will remember the
current size of the dragon, while clicking the
button Restore will change the size of the
dragon to the value that was stored when Save

was last clicked.

Remembering Things—Variables 171

Program file name: change-size-with-save-and-restore

As with the Reset button, clicking on one of the two new
buttons is an event so we need to respond to each of these
events. Clicking on Save causes the current size of the
dragon to be remembered; this is an indication that we need
a new variable, which we will name save. Here is a
description of the behavior:

0. when Save clicked
1. copy the current value of the variable s to the variable save

In the other direction, clicking on the Restore button will
cause the remembered value in save to be stored back into
the variable s so that it can change the size of the dragon:

0. when Restore clicked
1. copy the current value of the variable save to the variable s

Create the new variable save and make sure that the small
square next to the variable is checked so that a monitor for
it will appear on the stage.

? How can be copy the value of one variable to another
variable?

The instruction sets (stores) a value into
a variable. It can be used not only to store a fixed value like
100 but also to store the current value of another variable.
Recall that the reporter for a variable returns its current

172 Chapter 6

value; it can be used in the second window of the
instruction to obtain the current value of
a variable and set it into another variable. This implements
the action of copying: means copy the
current value of the variable s and make it the value of the
variable save. The previous value of save will be lost.

? Should the monitor for save be displayed with a slider?

The answer is no. The value of the variable save will be
changed only by the script for the button Save. Since the
user does not change it directly, no slider is needed.

Exercise 2

Modify the program by adding new sprites for
the two buttons. You can use the images we
have prepared (save-button.gif, restore-button.gif)
or you can create them using the blank button

image and the Paint Editor. Construct the
scripts for the Save and Restore buttons. Run
the program and check that it performs as
required.

Exercise 3

In Task 3 in Chapter 5 (dance-indefinitely), the
dancers moved towards each other until they
touched and then moved away 10 times 10
steps.

Remembering Things—Variables 173

a. Modify the animation so that the user can
control the number of times the dancers move
10 steps in each direction.

Guidance: Add a variable steps with a slider
and define reasonable limits on the slider. The
dancers will use the value of this variable as the
number of times they move 10 steps in each
direction.

Program file name: dance-steps1

b. Modify this animation so that the two
dancers need not have the same number of
repetitions.

Guidance: Define two variables Jay-steps and
Cassy-steps.

Program file name: dance-steps2

Exercise 4

a. Construct an animations for a rocket. The
rocket is initially in the lower left corner of the
stage; when the green flag is clicked, it moves at
a constant speed until it reaches the upper right
corner of the stage.

Guidance: Use a repeat until instruction that
encloses a move instruction. The number of

174 Chapter 6

steps in the move instruction is the value of a
variable Speed. Experiment with the initial
position and direction of the rocket and with its
speed until you are satisfied with its motion.

Program file name: rocket1

b. Modify the project so that the user can
control the speed of the rocket. What happens if
the speed of the rocket is negative? Explain.

Guidance: Display a slider for the variable
Speed and choose approprite limits for the
value of the variable.

Program file name: rocket2

c. Acceleration is the rate at which the speed
increases or decreases. A real rocket accelerates
(moves faster and faster) because as fuel is used
up the rocket weighs less and there is less
gravity and air resistance as it climbs above the
earth. Modify the animation so that instead of
the speed being determined by the user, it is
initialized to zero and accelerates (increases) by
a constant value each time the move instruction
is run.

Program file name: rocket3

Remembering Things—Variables 175

d. Modify the animation so that the acceleration
increases.

Guidance: Add a variable ChangeBy with an
initial value of 1. For each time the move

instruction is run, the value of Speed will
increase by the current value of ChangeBy, while
the value of ChangeBy will increase by 1.

Program file name: rocket4

e. We would like to measure how much faster
the rocket is in the animation of exercise (d)
compared with the rocket in the animation of
exercise (c). Unfortunately, the animations are
too fast to measure, so we would like each
rocket repeat its motion a large number of
times, perhaps 20 times. That should take long
enough so that you can measure the times of
the animations on your watch or by using the
stopwatch feature of your cell phone.

Guidance: Define another variable whose value
will be determine the number of times that the
motion of the rocket will be repeated. Measure
the total time that the animation takes and
divide by this number to obtain the average
time that it takes the rocket to move from corner
to corner. Experiment with the value of the
variable until you get consistent measurements
of the average time of the motion of the rocket.

176 Chapter 6

Program file name: rocket3a, rocket4a

Summary

Concepts

Variables: A variable can remember one value. Reading a
value does not cause the value in the variable to change,
but writing a new value replaces the value that was
previously stored in the variable.

Scratch instructions

Changing the value of a variable: To change the value of a
variable, use the absolute instruction or
the relative instruction . The first
instruction changes the value of a variable given in the first
window to the value given in the second window. The
second instruction changes the current value of the
variable specified in the first window by the value given in
the second window.

The new value can be either a number or the value of
another variable (obtained by placing the reporter
representing of the variable in the second window). The
set...to... instruction with a variable in the second
window copies the value of the second variable to the first
variable.

Remembering Things—Variables 177

Changing the size of a sprite: The size of a sprite can be
changed in a script using the absolute instruction

or the relative instruction .
The purple palette Looks contains a reporter for the size of
a sprite. If you check the small square, the size will be
displayed in a monitor on the stage. The monitor for size
cannot contain a slider, because the user can only modify
its value indirectly using these instructions.

Scratch techniques

Changing the size of a sprite: Above the stage are two
buttons that turn the usual cursor into a cursor for growing
or shrinking the sprite.

Creating a variable: Variables are created in Scratch by
clicking on the button Make a variable in the red-orange
Variables palette. A name must be given to a variable and
you can decide whether the variable can be seen by all
sprites or just one sprite (although we have not used the
second possibility yet). When the first variable in a project
is created, a group of blocks containing instructions for
working with variables appears.

Reporters and monitors: When any variable is created, a
reporter—a block that represents its value—is created. The
block has rounded ends and is a value block that can be
used in other blocks where a value is needed, such as the
blocks for setting the size of a sprite. Clicking the small
square next to this block causes a monitor for the variable

178 Chapter 6

to be displayed on the stage. The monitor is automatically
updated by Scratch to show the current value of the
variable.

Sliders: Right-clicking on the monitor brings up a menu
where a slider can be selected. The slider appears below
the display of the value of the variable; it enables the user
to change the value of a variable by dragging the knob on
the slider. Right-clicking on the slider brings up a menu
with the entry set slider min and max that can be used to
change the range of the values of the slider.

Chapter 7

It Depends—Conditional
Run

Control structures are central to the construction of
programs because they enable us to control the order in
which instructions are run. So far we have learned the
following control structures: repeated run (finite or infinite,
conditional or repeated a fixed number of times); running
a script in response to an event (clicking on the green flag,
receiving a message, pressing a key or clicking on a sprite);
waiting (for a period of time or an event to occur before
continue to run a script). In this chapter we will learn
another structure for controlling the running of
instructions in a script. It causes the running of a sequence
of instructions to be dependent on a condition becoming
true.

179

180 Chapter 7

The project that we construct this chapter is a bit more
complicated than the one that we constructed in the
previous chapter. It is based on the well-liked game,
Pac-Man. In the game, the player uses the keys to control
the movement of the Pac-Man character so that it can
navigate through a maze without hitting the walls. The
goal is to maneuver the Pac-Man so that it “eats” objects
placed within the maze. We will not develop the full game;
for example, we will not have monsters who try to “eat”
the Pac-Man. Feel free to extend the game once you have
worked through this chapter.

We will construct the game in stages: first, we will cause
the Pac-Man to move; then, we handle the event of its
hitting the wall of the maze; next, we enable to user to
control its movement; finally, we place bunches of bananas
in the maze for the Pac-Man to eat. The major
complications in the game will be to have it restart from
the beginning when Pac-Man hits a wall.

It Depends—Conditional Run 181

Example 1
Walking through a maze

Task 1

Construct a project where the Pac-Man
character is placed at an initial position within a
maze. It opens and closes its mouth repeatedly.

Program file name: pacman-opens-and-closes-mouth

The maze can be either an appropriate background or a
sprite; we choose to make it a sprite. Since both the maze
and the Pac-Man are not part of the standard Scratch
library, we have prepared an outline of a project that
already contains these two sprites (file name costumes).
Initially, the maze sprite will have no scripts, though we
will add some later.

Next, we implement the action of opening and closing
Pac-Man’s mouth. This effect can be obtained by
repeatedly changing between two costumes, one with an
open mouth and one with a closed mouth. Changing
costumes was explained in one of the optional sections of
Chapter 5. If you have not already studied it, go back and
do so before continuing with this chapter.

182 Chapter 7

Here is a a description of the behavior of the sprite for this
task:

0. when the green flag is clicked
1. initialize the position, direction and costume
2. repeatedly change the costume

It Depends—Conditional Run 183

Exercise 1

Fill in the details of the description of Pac-Man’s
behavior: the three initializations, a repeated
run and the instructions for changing the
costumes. Implement the detailed description
as a Scratch script, run it and check that it
works. Add comments and save the project.

Guidance: Click on the Costumes tab in the
script area and you will see that there are two
costumes defined for the Pac-Man sprite, one
with its mouth open and one with its mouth
closed.

Initialize the sprite so that it is placed at
position (−115, 115), facing right with its
mouth open. Changing the costume should be
done as described in the Optional section of
Chapter 5. In order for the animation to be seen
clearly, add a short wait (perhaps 0.2 seconds)
before the instruction that changes the costume.

The next task is to implement the movement of the
Pac-Man. We start with the simple movement of the
Pac-Man in a straight line; later, we will add the additional
requirements: detection of collisions with the walls and
controlling the direction. The movement has to occur at the
same time as the changing of the costumes, so a separate
script is used.

184 Chapter 7

Task 2

Expand the animation so that the Pac-Man
moves in a straight line.

Program file name: pacman-moves

Animated movement is implemented by repeatedly
moving a small number of steps. For now, we assume that
the Pac-Man moves indefinitely:

0. when the green flag is clicked
1. forever

1.1 move 2 steps

The script implementing this description will run in
parallel with the script for changing the costumes.

Duplicating the initialization instructions

In Chapter 10, we will explain that whenever two or more
scripts run concurrently—at the same time—there are
interactions between the scripts that can cause problems.
For now, take our word for it and ensure that both scripts
contain initialization:

0. when the green flag is clicked
1. initialize the position, direction and costume
2. forever

2.1 move 2 steps

It Depends—Conditional Run 185

Construct the Scratch script for this description and run
the two scripts concurrently by clicking the green flag.

Task 3

Extend the game so that the Pac-Man will stop
when it hits a wall and say that it is hurt.

Program file name: pacman-moves-and-hits-wall

In the description of the movement of the Pac-Man sprite,
the move instruction in step 2.1 is always run, but now we
want the Pac-Man to run a different instruction if it hits the
wall. Therefore, we will replace step 2.1 with the following
step:

2.1 if you hit the wall
2.1.1 say “Ouch!”

2.2 otherwise
2.2.1 move 2 steps

This control structure is called conditional run because the
decision to run certain instructions (say and move)
depends on whether a condition is true or not. First we
check a condition: 2.1 if you hit the wall. If the condition is
true, then the say step (2.1.1) is run; 2.2 otherwise—if the
condition is false—the move step (2.2.1) is run. Each time
the run reaches step 2.1, the truth of the condition is

186 Chapter 7

checked and a decision is made whether to run step 2.1.1
or step 2.2.1, but never both of them.

The conditional run instruction is the fifth

block from the bottom in the orange Control palette. Like
other conditional control structures, there is a window
with angled corners where a condition must be added, in
our case: you hit the wall.

The construction run instruction is sometimes called an
if-instruction because it starts with the word if.

Unlike the other conditional control blocks,

block has two “mouths.” In the first one, we will place the
instructions to be run if the condition is true (in our case,
2.1.1 say “Ouch!”), and in the second mouth, the
instructions to be run if the condition is false (in our case,
2.1.1 move 2 steps).

Drag this block to the script area and drop it near the script
for moving the sprite. Re-arrange the instructions so that
the if-then block is contained within the “mouth” of the
forever block , and so that the say and move instructions
are placed within the “mouths” of the if-then block:

It Depends—Conditional Run 187

New concept: conditional run
Conditional run consists of a condition and two
sequences of instructions. When it is run, the
condition is checked: if it is true, the first se-
quence is run, while if it is false, the second se-
quence is run.

188 Chapter 7

New construct in Scratch: conditional run

The instruction is used for

conditional run. The window with angled ends
contains the condition that is checked. The first
“mouth” contains the sequence of instructions
that are run if the condition is true, while the
second “mouth” (following the word else)
contains the sequence of instructions that are
run if the condition is false.

The condition of hitting the wall

Now we have to add a condition to the conditional run.
The condition must be true when the Pac-Man sprite hits
the wall of the maze. We use the fact that the maze is
drawn using two colors: dark pink for the paths through
the maze where the Pac-Man is allowed to move and dark
blue for the walls of the maze that surround the paths. We
have already encountered situations where we used
conditions of the form “Does the sprite touch something?”
Previously, the conditions were for touching another
sprite, the edge of the stage or the mouse cursor. Here, we

It Depends—Conditional Run 189

can use a condition that checks if the sprite is touching an
area with a given color: , which is the
second block in the light blue Sensing palette. The block
has a small window for specifying the color that needs to
be touched for the condition to be true. To change the color
to the color used for the walls of the maze, do the
following:

Click on the small window for the color. The
mouse cursor will change to a dropper like the
ones used to measure liquid medicines. Move
the mouse until the bottom of the dropper is
touching a wall of the maze. Click again. The
color in the small window become that of the
walls of the maze.

Here is the complete script for moving the Pac-Man:

190 Chapter 7

Click on the green flag to run the animation. Add
comments and save the project.

New construct in Scratch: touching a color

The condition is true if
the sprite is touching an area (the background
or another sprite) whose color appears in the
window.

The player controls the motion of the
Pac-Man by using variables

The next stage of the development of the game is to allow
the player to control the Pac-Man sprite so that it can move
through the maze without colliding with the walls.

Task 4

Modify the animation so that the player
controls the direction of the Pac-Man using the
arrow keys: the up arrow will cause the
Pac-Man to turn up 0◦, the right arrow will
cause it to turn right 90◦, the down arrow to
turn down 180◦ and the left arrow to turn left
−90◦.

It Depends—Conditional Run 191

Program file name: user-control-of-pacman

In Chapter 5 we constructed an animation in which the
player modified the motion of the dancing sprites by
pressing keys. Conditional repeated run instructions that
used the condition caused the repeated
motion of a sprite to stop when a key was pressed.
However, the dancing sprites had to respond to only two
possible key presses at any time, while the Pac-Man sprite
needs to respond to four possible key presses. Therefore, a
solution with conditional run instructions will be quite
complicated. (Exercise 7 asks you to construct a project
using conditional run.)

Instead, we will use a new control instruction, one that
causes a script to be run when a key is pressed. The block

is found just below the block

when green flag clicked in the orange Control palette.

We need four scripts, one for each key.

? Where shall we put these scripts?

The obvious place to put them is in the script area for the
Pac-Man sprite. However, the script area is quite small and
with so many scripts it will be difficult to find them.

192 Chapter 7

Assigning the responsibility for reacting to the
keys to the maze

We choose to assign the task of reacting to key presses to
the maze sprite, which until now has not had any scripts
associated with it. The scripts for the maze sprite will be
responsible for reacting to the key presses, while the
scripts for the Pac-Man sprite will be responsible for
changing direction.

? How are the two sprites going to communicate with
each other?

After all, one sprite can not change the direction of another
sprite. In Chapter 4 we saw one way that sprites can
communicate—by sending and receiving messages—but
to do this, we would have to use four messages, one for
each key, and the Pac-Man would need four additional
scripts, one for receiving each of the messages. This
solution will not solve the problem of having too many
scripts in the Pac-Man sprite.

Communicating using a variable as a mailbox

The maze sprite and the Pac-Man sprite will communicate
using variables, which were discussed the previous chapter.
The maze will notify the Pac-Man that a key has been
pressed by using a mailbox, a variable that is shared by
two sprites. Whenever the player presses a key, the maze
will change the value in the mailbox to the direction

It Depends—Conditional Run 193

associated with the key. Whenever the Pac-Man needs to
change its direction, it will use the direction that is saved
in the mailbox.

Since the variable will store the direction to which Pac-Man
needs to turn, we will name the variable turn. The maze
has the responsibility for setting the value of turn when
the player presses a key. We need four scripts, one for each
key; for example, the script for the up arrow is as follows:

0. when the up arrow key is pressed
1. set the variable turn to point up

Declare a variable for the mailbox by clicking on the button
Make a variable that appears in the red-orange Variables
palette. Since this variable will be used by more than one
sprite, leave the selection For all sprites checked. There is no
need to display the monitor for the variable, because we
are not going to read or change its value directly; it is used
only for communication between the two sprites.

Exercise 2

Construct the four scripts in the maze sprite for
reacting to the arrow keys.

Exercise 3

What should the initial value be for the variable
turn? Add the appropriate initialization
instruction to both scripts of the Pac-Man sprite.

194 Chapter 7

The Pac-Man sprite uses the values in the
variable

The next step is to modify the behavior of the Pac-Man so
that it will change its direction depending on the value in
the variable turn. Currently, the Pac-Man is given an
initial direction pointing right and then it repeatedly
moves two steps in that direction. We need to change this
so that after each movement the Pac-Man will change its
direction if needed. This will happen so fast that the player
will think that the Pac-Man changed its direction
immediately after the key was pressed. Here is a
description of the required behavior:

0. when the green flag is clicked
1. initialize the position, direction, costume and the variable turn
2. forever

2.1 if you hit the wall
2.1.1 say ”Ouch!”

2.2 otherwise
2.2.1 move 2 steps
2.2.2 change direction according to the value of turn

Make the appropriate modification to the script of the
Pac-Man sprite, add comments and save the project under
a new name. Run the scripts by clicking on the green flag
and use the arrow keys to guide the Pac-Man through the
maze without hitting the walls.

It Depends—Conditional Run 195

Setting the pace of the game

It is not at all easy to control the Pac-Man sprite because it
is moving so fast. Slow down the movement of the
Pac-Man by adding a short wait after each run of the loop:

2.2.3 wait 0.01 secs

Make this change and see if it makes it easier to play the
game. Experiment with the length of the wait until you can
control the Pac-Man, but it still moves fast enough for the
game to be interesting.

Example 2
Pac-Man doesn’t give up—restarting
the game
The game terminates when the Pac-Man hits a wall. The
sprite stops moving but continues to change costumes and
to say “Ouch!” Even dragging the Pac-Man to the initial
position with the mouse does not restart the game. Try it;
although the Pac-Man moves according to the keys that
the player presses, it continues to say “Ouch!” The game
can only be restarted by clicking on the green flag.

196 Chapter 7

Task 5

Modify the animation so that Pac-Man says
”Ouch!” for a short period of time after it hits
the wall and then the game restarts from the
initial conditions.

Program file name: restart-game

What happens in the current script when the Pac-Man
sprite hits a wall? The script continues in an infinite loop
checking whether Pac-Man is hitting a wall and if so
saying “Ouch!” Of course, since the sprite has not moved,
it is still touching the color of the wall and so nothing
changes.

Let us limit the length of time that Pac-Man says “Ouch!”
to two seconds. When the time is up, the initialization
steps will be done again, so that when the infinite loop
starts, the Pac-Man sprite no longer touches the wall. The
behavior of the sprite is now:

0. when the green flag is clicked
1. initialize the position, direction, costume and the variable turn
2. forever

2.1 if you hit the wall
2.1.1 say ”Ouch!” for 2 seconds
2.1.2 initialize the position, direction, costume

and the variable turn

It Depends—Conditional Run 197

2.2 otherwise
2.2.1 move 2 steps
2.2.2 change direction according to the value of turn
2.2.3 wait for 0.01 seconds

Make the appropriate changes to the script. Note that both
initialization steps, 1 and 2.1.2, are implemented with four
instructions.

Add comments and save the project under a new name.
Click the green flag to run the animation and check that it
performs as required.

Example 3
Pac-Man turns green—more on
conditional run
In most games, when something happens to a character, it
changes its appearance. Let us do the same to the
Pac-Man. Instead of just saying “Ouch!”, it will change its
color to green out of shame at crashing into the wall. On
the surface, this seems like a simple change to the project,
but any change to a computer program must be done
carefully, because it is can cause unforeseen problems. The
change we are going to make will raise problems that will
enable us to learn more about conditional runs.

Task 6

Modify the animation so that the Pac-Man
changes color to green when it hits a wall.

198 Chapter 7

First attempt at a solution

The first
step is to create a new costume for the Pac-Man
sprite. You can use the file pac-man-green.gif

or create it yourself as described below.

The remaining change seems to be very simple. Replace
the steps:

2.1.1 say ”Ouch!” for 2 seconds
2.1.2 initialize the position, direction, costume and the variable turn

by:

2.1.1 change costume to pac-man-green
2.1.2 wait for 2 seconds
2.1.3 initialize the position, direction, costume and the variable turn

The initialization after changing the costume also
initializes the costume (to pac-man-open) so we added a
wait instruction to ensure that we have time to see the
green costume.

Use an absolute instruction to change the costume:
.

Exercise 4

Make the changes described and run the
animation. Explain the behavior of the Pac-Man
sprite.

It Depends—Conditional Run 199

Program file name: pacman-change-to-green-bug1

Modifying the costume: First, create a copy of
the Pac-Man costume: Click on the Costumes

tab, and click on Copy for the costume
pac-man-open. A new, third, costume will
appear; give it an appropriate name such as
pac-man-green by clicking in its name field and
typing the new name. Now, click on Edit to start
the Paint Editor. Change the colors in the
costume to some shade of green using the Fill
tool (the one that looks like a bucket of paint
being poured). Click OK when you are finished.

Analyzing the problem

The change that we made did not take into consideration
the entire behavior of the sprite. In addition to the script
that is responsible for the movement of the sprite, there is a
second script that is responsible for causing Pac-Man to
open and close its mouth by changing the costumes of the
sprite. These two scripts run concurrently. This results in
two problems:

• When the Pac-Man starts moving—even before it hits
the wall—the green costume is displayed along with
the two others pac-man-open and pac-man-closed.
The reason is that the script that changes the

200 Chapter 7

costumes uses a relative instruction: .

This worked well when there were just two
costumes, but we have added a third costume that
should not appear unless the Pac-Man sprite hits the
wall. Unfortunately, the relative instruction next

costume does not know this, and includes the
pac-man-green costume in the changes it makes
while the sprite still moving.

• When the sprite does hit the wall, the script
continues to change costumes instead of showing just
the green costume for two seconds before restarting.

Second attempt at a solution

To solve the first problem, we have to change the script for
opening and closing Pac-Man’s mouth so that it no longer
uses the relative instruction. Replace the relative
instruction with two absolute instructions:

• to change to the open
costume

• to change to the closed

costume.

? How do we know when to changed to each of the
costumes?

It Depends—Conditional Run 201

Clearly, when the current costume of the sprite is
pac-man-open we have to change it to pac-man-closed and
when it is pac-man-closed we have to change it to
pac-man-open. Let us implement this using a conditional
run:

4.2 if the current costume is pac-man-open
4.2.1 switch to the costume pac-man-closed

4.3 otherwise
4.3.1 switch to the costume pac-man-open

Comparing values

In order to translate this into Scratch, we have to check if
the current costume is equal to the open one or to the
closed one. That is, we need a condition = (equality) that
compares two costumes. Unfortunately, there is no way to
do this in Scratch, but it is possible to obtain the number of
the current costume of a sprite and then to check if this
number is equal to some value:

4.2 if the number of the current costume = the number of the pac-man-open costume

4.2.1 switch to the costume pac-man-closed
4.3 otherwise

4.3.1 switch to the costume pac-man-open

The condition can be found in the green
Operators palette, the seventh block from the top. The

202 Chapter 7

block has angled ends and can be used whenever a
condition is needed (such as in an if-then block for
conditional run or in a repeat until block for conditional
repeated run). The block for the condition has two small
windows in which we enter the values that we want to
compare.

The third block from the top the purple Looks palette
is the reporter for the number of the

costume. The block itself has rounded ends that fit into the
small windows of the equality condition. We can drag this
block and drop it into one of the two windows. If we click
on the other window, we can enter a number. Thus, we can
create the condition that is true if the
current costume is the first costume, which is
pac-man-open. The condition can then be used in a
conditional run.

New construct in Scratch: equality

The block is a condition that is true if
the value in the left window equals the value
in the right window; it is false if the values are
different.

It Depends—Conditional Run 203

New construct in Scratch: costume number

The block is a reporter for the
current costume number of a sprite. Click the
Costumes tab for a sprite; the costume number is
written to the left of the image of the costume.
The numbers are assigned in the order that the
costumes are displayed from top to bottom.

We have been very careful to ensure that the
shape of a block corresponds exactly to the
shape of a window: conditions have angled
ends, while rounded windows accept values
and reporters. The windows in the equality
operator have straight sides, neither rounded
nor angled. Such windows are very permissive:
we are allowed to enter a number or a string
(such as ”Ouch!”), and we are allowed to drop
blocks that have rounded ends (like reporters)
or angled ends (like conditions). In most cases,
we will drop reporters with rounded sides
when we want the value of a variable, or we
will enter numbers. As we have seen, reporters
may be for variables that already exist in
Scratch (such as costume#) or those that we
declare (such as turn).

Exercise 5

204 Chapter 7

Change the scripts to use absolute instructions
for changing costumes and run the animation
by clicking the green flag. Explain what
happens.

Program file name: pacman-change-to-green-bug2

Analyzing the problem

We have solved the first problem that we found. The new
script for changing costumes does not use the green
costume when the Pac-Man is moving because we are
using absolute instructions that do not include the green
costume. However, we have not solved the second
problem: when the Pac-Man hits the wall and stays there
for 2 seconds before starting the game again, the costumes
continue to change although we want the Pac-Man to
remain green.

? Why does this happen?

The idea behind the changes was correct: we want to
ensure that the open and closed costumes aren’t displayed
when the current costume is green. Unfortunately, there is
a small but significant problem in the way that we
translated this idea into the behavior of the sprite. Here is
a description of what we want:

if Pac-Man is wearing the open costume
change it to the closed costume

It Depends—Conditional Run 205

otherwise if Pac-Man is wearing the closed costume
change it to the open costume

Instead, our script implemented the following behavior:

if Pac-Man is wearing the open costume
change it to the closed costume

otherwise
change it to the open costume

? Can you find a costume for which the two descriptions
are different?

The two descriptions work differently when the current
costume is the green one.

• According to the first description, when the costume
is green then it is not the open costume so it is not
changed to the closed costume. Moving to the
otherwise, when the costume is green then it is not the
closed one, so it is not changed to the open costume.
The result is correct: the green costume is not
changed.

• According to the second description, the first part of
the statement works the same (it is not changed to the
closed costume), but the second part of the statement
is different. Since the costume is green, it is not the
open costume, so the otherwise part is run instead and
this changes the costume to the open costume. From

206 Chapter 7

then on, as the statement is repeated, it will change
the costume to the closed costume, then to the open
costume and back again.

Nesting conditional run instructions

In order to solve this problem, we need to use conditional
run instructions in a more complex manner:

4.2 if the current costume is pac-man-open
4.2.1 switch the costume to pac-man-closed

4.3 otherwise
4.3.1 if the current costume is pac-man-closed

4.3.1.1 switch the costume to pac-man-open

This structure integrates conditional run instructions in a
new way: one conditional run instruction is contained
within another. The word if appears twice, in step 4.2 and
in step 4.3.1 which is part of the behavior defined by the if
in step 4.2.

When one structure appears within another structure, they
are called nested structures. We have already seen an
example of nested structures: In Chapter 5, one repeated
run instruction was nested within another repeated run
instruction. In fact, any control instruction can appear
within any control instruction, either the same one or
another one. In the first example in this chapter, there was

It Depends—Conditional Run 207

a conditional run instruction contained within an infinite
run instruction.

New concept: nested conditional run
Any instructions can be placed within a con-
ditional run, in particular, another conditional
run. This is called nesting.

Conditional run without an alternative

There is a difference between the conditional run in step
4.2 and the one in step 4.3.1. The first has an alternative
(otherwise) that is run if the condition is not true, while the
second one does not have an alternative. If the condition is
false, nothing happens. This is called a conditional run
without an alternative.

Let us carefully check steps 4.2–4.3 for the three possible
values of the current costume:

• The current costume is pac-man-open. Steps 4.2 and
4.2.1 cause the costume to be changed to
pac-man-closed.

• The current costume is pac-man-closed. Since this is
not pac-man-open, step 4.2 does not cause step 4.2.1
to be run; instead, step 4.3 otherwise causes step 4.3.1
to be run. The current costume is checked again and

208 Chapter 7

found to be pac-man-closed, so step 4.3.1.1 is run
and the costume is changed to pac-man-open.

• The current costume is pac-man-green. Now, neither
the condition at step 4.2 nor the condition at step 4.3
is true and nothing is done.

You can see that these steps change costumes exactly as we
want.

Let us now implement these instructions in Scratch. The

block implements conditional run without an

alternative; it appears just above the block for conditional
run (with an alternative) in the orange Control palette. The
block also has a window for the condition, but it has only
one “mouth” for the instructions that will be run if the
condition is true.

New concept: conditional run without an al-
ternative
A conditional run need not have an alternative
that is run if the condition is false. In that case,
nothing happens.

It Depends—Conditional Run 209

New construct in Scratch: conditional run
without an alternative

The block implements conditional

run without an alternative. Since nothing hap-
pens if the condition is false, there is no second
“mouth” labeled else .

Exercise 6

Use the conditional run without an alternative
to implement steps 4.2–4.3 as described above.
Check that the change of costumes is correct
during the various stages of the game: when
the Pac-Man moves through the maze, when it
hits a wall and when the game restarts after it
hits a wall.

Program file name:

pacman-change-to-green-correct

Exercise 7

When solving Task 4, we mentioned that there
is a different method of responding to the keys

210 Chapter 7

pressed by the player, where the responsibility
of responding to the keys remains with the
Pac-Man sprite and not with the maze.
Implement the example using nested
conditional run instructions, where the
condition in each instruction checks if one of
the keys has been pressed. The script
responsible for the movement of the sprite will
also be responsible for checking if a key is
pressed and changing the direction accordingly.
When your script runs correctly, explain why
some conditional run instructions have
alternatives and some do not.

Program file name: user-control-nested-if

Example 4
To complete the game, let Pac-Man eat
bananas
In the real, Pac-Man scores points whenever it “eats” a dot
placed within the maze. In our game, Pac-Man will “eat”
bananas; for simplicity, we limit ourselves to two bunches
of bananas and we leave it to you to expand the project by
keeping score of the number of bananas that are eaten.

It Depends—Conditional Run 211

Task 7

Modify the animation so that two bunches of
bananas are placed at fixed positions in the
maze. When the Pac-Man sprite touches a
bunch of bananas, the bananas disappear.

Program file name: pacman-eats-bananas

Since the two banana sprites behave the same, we start by
implementing one of them.

? What will happen when the bananas are eaten?

The task of eating the bananas is the responsibility of the
Pac-Man. The bananas are passive and all they have to do
is to disappear from the stage when eaten. The sprite for
the bananas need only initialize its position and disappear
from the stage when the Pac-Man sprite touches it:

0. when the green flag is clicked
1. show
2. wait until touching the Pac-Man
3. hide

We already know how to implement step 2 using a wait

until... instruction with a condition. The instructions
that cause a sprite to appear and disappear are and

; they can be found near the bottom of the purple

212 Chapter 7

Looks palette. The show instruction is part of the
initialization; it ensures that the bananas are visible after
the green flag is clicked. Without this instruction, you will
not see the sprite after playing the game for the first time.

New construct in Scratch: hiding and showing
a sprite

The instruction causes the sprite to ap-

pear on the stage.
The instruction causes the sprite to dis-

appear from the stage.

Initializing the bananas

There is problem with this script. The bananas appear
when the green flag is clicked at the beginning of the game,
but once they disappear, they do not re-appear when the
game restarts after the Pac-Man hits a wall. The Pac-Man
sprite has to notify the banana sprites that it is restarting
the game. This is easy to do with a message; when the
banana sprite receives the message it will reappear:

0. when I receive the message Initialize
1. show
2. wait until touching the Pac-Man
3. hide

It Depends—Conditional Run 213

The Pac-Man sprite will broadcast this message before the
game is restarted.

When a sprite disappears, it still “remembers” all of its
properties like its position, direction and costume, so a
subsequent show instruction will cause it to re-appear
exactly as it was when hide was run.

There is no need for two almost identical scripts
in the banana sprite: one that is run when the
green flag is clicked and the other that is run
when the game restarts. If the Pac-Man sprite
broadcasts the Initialize message during its
initialization, we can delete the script that is run
when the green flag is clicked.

Exercise 8

Implement this solution:

• Add broadcast instructions to the script
of the Pac-Man.

• Construct one banana sprite from the
image bananas1 from the Things folder. Use
the button above the stage to set the mouse
to the mode where it can shrink a sprite,
and resize the sprite until it can fit
comfortably in the paths within the maze.
Place it somewhere with in the maze, far

214 Chapter 7

enough from the initial position of the
Pac-Man so that it will be challenging for
the player to guide the Pac-Man to eat the
bananas.

• Write the script for this sprite.

• Duplicate the banana sprite at another
location in the maze. Duplicating a sprite
was explained in Chapter 2 and we repeat
the explanation here for convenience:

Click on the leftmost button above
the stage . Click on the sprite
in the sprite area (a copy of the
sprite will appear). Drag the
image of the new sprite to an
appropriate place.

• Add comments to the project and save it.
Play the game and see if you can
successfully guide the Pac-Man to eat the
two banana sprites.

Let us now leave the Pac-Man game and look at other uses
of conditional run.

Example 5
Random numbers
Random numbers are like a lottery: you don’t know in
advance what numbers will be chosen; all you know is that

It Depends—Conditional Run 215

they will be selected from a certain range such as from 1 to
36. The concept is also familiar from games: in card games
you can be dealt any of the 52 cards from the deck and in
dice games the numbers 1 through 6 are equally like to
appear on each die that is thrown.

A computer can generate sequences of random numbers
and they are used in many applications. Computer games
use random numbers to make the game unpredictable.
Random numbers are used in simulations, for example, of
traffic flow, where we can’t predict in advance when
people will drive their cars. Random numbers are even
used in cryptography to keep a credit card number secret
when shopping in an online store.

In this section we show how to use the conditional run
instruction together with random numbers to create an
entertaining version of the animation of a soccer game
from Chapter 4. The project in that chapter had three
sprites: the referee who gives the signal for the opening
kickoff, a soccer player Pele who kicks the ball when he
receives the referee’s signal and the soccer ball. Here, we
replace the referee with a goalie who has the difficult task
of trying to block a kick by Pele. Of course, the goalie’s job
would be simple if he always knew where the ball was
going, so we use random numbers to make its path
unpredictable.

Task 8

When the green flag is clicked, Pele will kick the

216 Chapter 7

ball. If the goalie stops the ball, it will bounce
back in the direction of Pele. Otherwise, it will
stay at the edge of the stage, which we take to
mean that the ball entered the goal. Pele will
kick the ball in a different direction each time
that the animation is run and we won’t know
the direction of the ball until after it is kicked.

Program file name: cat-kicks-ball-randomly

Kicking the ball

Let us start with the behavior of Pele. When the green flag
is clicked, Pele is positioned at the right edge of the stage,
facing left. He says “Let’s go” and then kicks the ball:

0. when the green flag is clicked
1. initialize the position and direction
2. say “Let’s go”
3. kick the ball

Pele is not responsible for the movement of the ball sprite
so he is also not responsible for determining the direction
in which the ball moves.

Exercise 9

Construct the script for Pele to implement the
behavior described above.

It Depends—Conditional Run 217

Guidance: Pele’s initial position will be (190, 0)
and his initial direction will be pointing left. In
order to kick the ball, he moves 40 steps in that
direction.

The goalie hopes for the best

The goalie will simply stand at the left edge of the stage
and wait:

0. when the green flag is clicked
1. initialize the position and direction

Exercise 10

Construct a script for the goalie.

Guidance: Choose one of the People images like
amon1 for the goalie. The goalie’s initial
position will be (−200, 0) facing right.

The ball’s random behavior

The ball has to do the following: wait until it is kicked by
Pele and then move in the general direction of the goalie. If
the goalie hits the ball, the ball must turn around and
move back in the direction of Pele. Here is a description of
the behavior of the ball:

218 Chapter 7

0. when the green flag is checked
1. initialize the position and direction
2. wait until kicked by Pele
3. move in a random direction
4. if hit by the goalie

4.1 turn around and move in the direction of Pele

Your knowledge of Scratch is enough to implement this
behavior script, except for step 3. This step can be
implemented by the instruction

. We know what the value of

x is supposed to be: the left edge of the stage which is at
−200, and it is easy to find the number of seconds for the
glide so that the animation can be easily seen. But what
about the value of y? We want the ball to choose the number
by itself just as if it were picking the number from a lottery.

Random numbers are obtained by reading the value of
, the fifth block from the top in the

light green Operators palette. When its value is read, a
number within the range given by the values in the two
windows is obtained. Just as in a lottery, if you read its
value again and again, you will probably receive different
numbers each time. Even if the number does repeat itself,
you never know when that is going to happen. This block
has rounded ends just like a reporter for a variable.
Therefore, it can be used anywhere that a number is
expected:

It Depends—Conditional Run 219

New concept: choosing a random number
Given a range of numbers (such as 1 to 100),
choosing a random number means that some
number will be chosen from the range, but the
values of subsequent choices will be unpre-
dictable and a number may be chosen multiple
times. We assume that each number within the
range has a roughly equal chance of being ob-
tained.

New construct in Scratch: choosing a random
number

The block is a reporter
block whose value can be read. These values
are selected randomly from the range of num-
bers defined by the values in the two windows.

Exercise 11

Construct a script for the ball sprite. Its initial
position will be (120,−20) facing left. The ball
will move using the instruction glide 1 secs

to x: −120 y:... , where the value of y will

220 Chapter 7

be a random number between −150 and 150.
When the glide is finished, the ball will check if
it is touching the goalie; if so it will turn around
and move a few steps in the direction of Pele.
Add comments and save the project. Run the
project many times and check that the ball
glides to a different y-position each time.

Program file name: cat-kicks-ball-randomly

Additional material on Scratch:
Brightness and color

We will make one more change to the soccer game.

Task 9

If Pele scores a goal (that is, if the ball is not
blocked by the goalie), then his image on the
stage will change color, become brighter and
jump for joy; the goalie, however, will become
darker and fall on the ground out of shame for
failing to block the ball. On the other hand, if
the goalie blocks the ball, he will change color,
become brighter and jump for joy, while Pele
will become darker and turn his face away.

Program file name: cat-kicks-ball-randomly-change-effect

It Depends—Conditional Run 221

The ball is responsible for reporting collisions

Although we are enriching the behavior of Pele and the
goalie, the only sprite that knows whether a goal has been
scored or not is the ball. The ball sprite will detect if it
collides with the goalie and it has to communicate this fact
to the goalie. Let the ball send one of two messages, Goal
or Stopped; the behavior of the goalie sprite will depend
on which message it receives.

Exercise 12

Make the appropriate changes in the script for
the ball sprite. In addition to adding broadcast

instructions, you will have to change the
conditional run instruction. Explain.

Pele and the goalie change their behavior

Let us now change the behavior of Pele and the goalie. We
must add two scripts to each sprite, one for each of the
messages that can be received. The behavior of the goalie
can be described as follows:

0. when I receive the message Goal
1. darken the image
2. fall down

0. when I receive the message Stopped

222 Chapter 7

1. brighten the image
2. change color
3. jump up

The behavior of Pele is similar with the messages
exchanged:

0. when I receive the message Stopped
1. darken the image
2. turn around

0. when I receive the message Goal
1. brighten the image
2. change color
3. jump up

There are many similarities between these descriptions,
both in their structure and in the steps that change the
appearance of the sprites: brightening or darkening the
image, changing color, or moving.

• Falling down is done simply by turning to face
downwards, while turning around is a turn from
facing left to facing right.

• Jumping up is implemented with a glide instruction:
its x-value is the same as the initial x-value of the
sprite, while the y-value is the initial value to which
100 steps have been added.

It Depends—Conditional Run 223

Exercise 13

Construct partial scripts for Pele and the goalie.
They start with when I receive...

instructions, followed by the appropriate turn
and glide instructions.

Changing effects

Changing the appearance of a sprite is done by changing
graphical effects using instructions that appear in the
purple Looks palette:

• The absolute instruction ;

• The relative instruction .

Click on the small arrow in the first window in these
instructions: you will see a list of effects that can be
changed. For this project, change the color and brightness
effects, but feel free to experiment with the other effects.

The second window in the instructions controls by how
much the effect is changed or the absolute value that is set.
In general, these values range from 0 to 100 or from −100
to 100. For example, negative numbers will make the
image darker, while positive numbers will make it
brighter. Again, experiment with these values to achieve
the effect that you want.

224 Chapter 7

New construct in Scratch: setting and chang-
ing graphical effects

The block sets a graphical
effect of the image of the sprite. The effect is se-
lected in the first window and the value of the
effect is entered in the second window.
The block changes the
value of the selected effect by the value in the
second window.

Exercise 14

Complete the scripts for Pele and the goalie
using these instructions for setting and
changing graphical effects.

Additional Exercises

Exercise 15

a. Construct an animation of a nervous
grasshopper. Initially, the grasshopper will be
at the center of the stage, facing right. It starts
walking four steps at a time, but it is so nervous

It Depends—Conditional Run 225

that after every four-step walk it randomly
decides if it should reverse its direction, turning
180◦ from right to left or from left to right. Run
the animation many times: does the
grasshopper always tend to stay near the
middle of the stage or does it wander off to one
side?

Guidance: Use the grasshopper1 sprite from the
Animals folder. Since it will move only left or
right, click the button next to the sprite’s
name.

After each four-step walk, the sprite randomly
chooses 1 or 2. If 1 is chosen, the grasshopper
reverses direction; otherwise, it doesn’t.

To make it easy to follow the grasshopper’s
position, display its x-position on the stage, by
clicking the small square next to the sprite’s
reporter for its x-position at the bottom of the
Motion palette.

Program file name: grass1

b. Add another grasshopper whose initial
position is 100 steps to the right of the initial
position of the first one. The second
grasshopper doesn’t move. The first
grasshopper says “Nice to meet you!” if it
touches the second one.

226 Chapter 7

Program file name: grass2

c. Add a third grasshopper on the other side of
the moving one:

This grasshopper also doesn’t move. The first
grasshopper says: “Nice to meet you G2!” or
“Nice to meet you G3!” depending on which
grasshopper it touches. Are both grasshoppers
touched equally often?

Program file name: grass3

d. Modify the previous exercise so that the two
fixed grasshoppers say “I’m G2. Nice to meet
you!” or “I’m G3. Nice to meet you!”. The
moving grasshopper doesn’t say anything.

Program file name: grass4

e. Just for fun, initialize the three grasshoppers
with different color effects.

It Depends—Conditional Run 227

Program file name: grass5

f. Place four stationary grasshoppers
surrounding the moving one: above and below,
as well as to the left and the right. The moving
grasshopper now turns in a random direction
from −180 to 180 after each move. Be sure to
click the button next to the sprite’s name so
that it can rotate in all directions.

Program file name: grass6

Exercise 16

Flowers of the same color want to be friends
and touch each other. The stage starts with
three pairs of flowers, one pair of each color:
red, yellow and violet. Place a Start button on
the stage. (You can find the sprites already
defined in the file flowers-costumes.)

228 Chapter 7

In all the following exercises, the six
flower sprites all run similar scripts so
you can copy a script from one sprite
to another and then make the
required modifications as was
explained in Chapter 2: right click on
the script, select duplicate and drag the
copy to another sprite in the sprite
area below the stage.

a. The flowers are initially placed at random
positions along the x-axis from −220 to 220,
facing right. When the Start button is clicked,
they move along the x-axis (bouncing if they hit
the edge of the stage) until each flower touches
the other flower of its color.

Guidance: Use the condition
from the Sensing palette,

specifying the same color in the two windows.

Program file name: flowers1

b. Modify the previous animation so that the
initial direction of each flower sprite is random,
either 90◦ or −90◦.

Program file name: flowers2

It Depends—Conditional Run 229

c. Construct a two-dimensional version of the
animations by having the flowers select a
random initial direction in the range −180◦ to
180◦.

Program file name: flowers3

d. Modify the previous animation so that the
initial y-position of each flower is a random
number in the range −150 to 150.

Program file name: flowers4

e. Modify the previous animation so that it runs
indefinitely. When a flower of a color meets the
other flower of its color, they both say “I found
you!!” for 2 seconds; then both flowers
reinitialize their position and direction to new
random values.

Program file name: flowers5

Summary

Concepts

Random numbers: Random numbers introduce an
element of chance into a program. A random number is

230 Chapter 7

like a variable, except that every time you use the variable,
its value is likely to be different. The values are chosen
from a range of numbers.

Conditional run: The control structure conditional run is
used to specify that running a set of instructions depends
on whether a condition is true or false. There are two
versions of this structure: the first is conditional run with
an alternative. If the condition is true, one sequence of
instructions is run, while if the condition is false, another
sequence of instructions is run. The second form is
conditional run without an alternative. This form controls
only one sequence of instruction, so if the condition is
false, nothing happens. Like all control structures,
condition run instructions can be nested.

Scratch instructions

Random numbers: The value of the operator
is a random number in the range

defined by the values in the two windows. This block has
rounded ends and can be used whenever a numerical
value is needed.

Conditional run: There are two instructions for

conditional run, one with an alternative and

It Depends—Conditional Run 231

the other without an alternative . The

“mouths” contain the sequence or sequences of instruction
to run and the condition is place in the window after the if.

Conditions: The block from the
light blue Sensing palette is a condition that is true if the
sprite is touching the specified color in another sprite or in
the background. The condition equality checks if
two values are the same. The windows on both sides of the
“=” symbol can contain either numbers or reporters that
represent the values of variables, either built into Scratch
like or defined by the user.

Hiding and showing: A sprite can hide itself or cause itself

to appear using the instructions and .

Graphical effects: The graphical effects used when
displaying the images of the sprites on the stage can be set

by the absolute instruction and

changed by the relative instruction .
The menu in the first window lists the effects that can be
modified, while the second window is used to specify the
value of the effect or the change in its value.

232 Chapter 7

Chapter 8

Numbers

We have used numbers since the very first example in this
book. Many instructions such as move require numbers to
turn them from general instructions to specific
instructions. Numbers have been used to indicate the
number of steps to move, the direction to turn, the number
of times a loop is to be run, the number of seconds to wait,
the identifying number of a costume, and so on. We also
used variables to remember values which are numbers
such as the size of a dragon. In this chapter we will deepen
our knowledge of numbers and see how they can be
included in instructions in new ways.

Example 1
Oranges for the prince
We will construct an interactive animation that could be

233

234 Chapter 8

used to teach young children how to add numbers. The
animation will show the prince who wants to receive 12
oranges and who asks the user give them to him. The user
will supply the oranges by clicking on buttons, with a
separate button for each amount that can be given at one
time: 2, 3, 4 or 5 oranges. We will construct the animation
in stages: first, we will implement the buttons and later we
will add the prince.

Task 1

Construct an animation for displaying oranges.
There will we four buttons, labeled 2, 3, 4 and 5.
Clicking on a button labeled with a number will
cause that number of oranges to appear on the
stage. The oranges will appear on the stage in a
pile of rows: Each click on the button will cause
the appropriate number of oranges to appear in
a new row on the pile.

Program file name: get-oranges

The following image shows the stage after clicking on 3, 5,
4, 2 in that order:

Numbers 235

? How many sprites are needed?

Clearly, we need sprites for each of the four buttons.

? What about the oranges?

The oranges are also images that appear on the stage, but
we do not know in advance how many oranges there will
be (it depends on which one of the buttons the user clicks),
so we can’t create a separate sprite for each orange.
Instead, the oranges will be just images on the stage of a
single sprite; the images themselves have no scripts.

The orange that duplicates itself—one
sprite, many images

In Scratch, a Sprite can create images of itself on the stage,
just like a rubber stamp creates an image of itself on a piece
of paper. The image remains even after the stamp is
removed from the paper and moved to another position.

236 Chapter 8

This image is not a sprite; it cannot move or respond to
messages the way a sprite can. The instruction ,
which appears as the last block in the dark green palette
Pen, creates images.

New construct in Scratch: stamp

The instruction creates an image of the
sprite on the stage at the current position of the
sprite. The image remains even if the sprite it-
self moves.

The stamp instruction will cause the image of the orange
sprite to appear at the current position of the sprite, but the
action of stamping will be caused by clicking on one of the
buttons. Therefore, a button sprite must respond to a click
by notifying the orange sprite that it must stamp an image.
Communications between sprites can be done by sending
and receiving messages. A partial description of the
instructions for the button sprite is as follows (where we
give the instructions for the button labeled 3):

0. when the button 3 sprite is clicked
1. inform the orange sprite to add 3 new images

Numbers 237

The messages passed to the orange sprite

The orange sprite has to respond to the messages that it
receives. There are two possible ways of implementing
this. One is to have separate messages for each number of
oranges: for example, there would be one message for
making three images of the orange sprite and the sprite
would respond to this message by creating three images; in
addition, there would be one message for creating four
images and one for five images. The orange sprite needs to
have a separate script for each such message because
receiving a message always starts the run of a script. In our
case, there would be four scripts, one for each of 2, 3, 4 and
5 new oranges.

The other way to implement the communications between
the button sprites and the orange sprite is to have just one
message for making a single image of an orange and to
require that each button sprite be responsible for sending
the correct number of messages. For example, step 1 above
would be implemented by sending three messages:

0. when the button 3 sprite is clicked
1. inform the orange sprite to add one new image
2. inform the orange sprite to add one new image
3. inform the orange sprite to add one new image

The response of the orange sprite is now very simple:

0. when you receive the message to add a new image

238 Chapter 8

1. stamp a new image

Passing information using variables

These outlines of the behavior of the orange sprite and the
button sprites are not complete. In particular, we have not
yet shown how to position each new image of an orange:
the first image after clicking a button sprite must start a
new row, while subsequent images (up to the number that
appears on the button) must be in the same row, but not at
the same position, so that we can see all the oranges in a
row.

Since the orange sprite receives an identical message each
time that a new image must be stamped, it does not have
the information needed to position the new image at the
start of a new row or at a certain position within an
existing row. The button sprites will be responsible for
computing the position of each orange image, because the
button sprites know when an orange is to begin a new row
and how many oranges have already been stamped.
Information on the position of an orange must be
transmitted to the orange sprite and for this we will use
variables as mailboxes as we did in the previous chapter.

We will use two variables, x to remember the x-position of
the orange on the stage and y to remember the y-position
of the orange on the stage. The orange sprite need only
read the values of these variables. The outline of its

Numbers 239

behavior can be extended as follows:

0. when you receive the message to add a new image
1. go to position (x,y)
2. stamp a new image

The computation of the values of x and y is the
responsibility of the button sprites. The behavior of the
button labeled 3 is:

0. when button 3 sprite is clicked
1. set the values of x and y to one position before the beginning of a new row
2. run 3 times

2.1 add a value to x so that it is at the next position in a row
2.2. inform the orange sprite to add one new image

The description of the behavior of the button sprite started
with just two steps:

0. when your image is clicked upon
1. inform the orange sprite to add 3 new images

The description is now more complex: a repeated run of
two steps. Furthermore, step 1 really describes two steps:
one to set the value of x and one to set the value of y.

Exercise 1

240 Chapter 8

a. Explain why in step 1 the value of x is set to
that of a position before the beginning of a new
row of oranges. (Hint: think about the order of
steps 2.1 and 2.2.)

b. In step 1, would it be possible to set the value
of x to the beginning of a new row? If so, what
other changes would you have to make?

Arranging the oranges in rows

We will arrange the rows of oranges as shown in the image
of the stage at the beginning of this chapter. The value of x
for the first orange in a row will be −150 and there will 50
steps between oranges in a row. There will also be 50 steps
between rows. Step 2.1 changes the value of x so that it
points at the next position in the row and step 1 changes
the value of y so that it points to the beginning of the next
row. Therefore, these steps will be implemented using
relative instructions: the value of x is changed by 50 in step
2.1 and the value of y is changed by 50 in step 1. Step 1
requires that the value of x be set to point to the start of a
new row, so it will be implemented by an absolute
instruction.

Exercise 2

What value should be used in the absolute

Numbers 241

instruction to set x to a position before the start
of a row?

Synchronization among the scripts

Since the button sprites and the orange sprite
communicate using both messages and variables, we have
to ensure that they are correctly synchronized. Step 2 of the
description of the button’s behavior results in the running
of multiple (2, 3, 4 or 5) instructions to send messages, one
after the other. However, it is possible that before the
orange sprite has a chance to receive one of the messages
and to stamp a new image of an orange, the button sprite
will continue with its repeated run instruction and change
the value of x in step 2.1. This will cause some of the
images to be stamped in an incorrect position.

The solution is to have the button sprites wait until the
orange sprite stamps the images before continuing with
the repeated run. This can be done in Scratch using the
instruction that causes the script to
stop running until the script that is run when the message
is received has finished its run. The block appears just
below the block for broadcast in the Control palette.

242 Chapter 8

New construct in Scratch: broadcast and wait

The instruction is similar

to the instruction except that

the script that contains it stops running after
it sends the message. The scripts that run as
a result of receiving the message run to com-
pletion and only then is the script containing

allowed to continue.

Exercise 3

Open the project costumes which contains
sprites for the oranges and the buttons. Make
the x and y variables and create the scripts for
the orange and for a button sprite as described
above. Duplicate the button’s script in the other
buttons and make the appropriate
modifications.

What about initialization?

The project is not yet complete because we have not taken
care of the initialization of the sprites. For the buttons, no
initialization is needed because they remain in the position

Numbers 243

where their images were placed when the project was
created. For the orange, several initializations must be
done:

• We must clear the stage of the images of the orange
sprite from the previous run of the project.

• We must place the orange sprite somewhere; it doesn’t
really matter where, since it is used only to stamp
images where we tell it to, so we choose to place it in
the upper right corner at (200, 150).

• The variable y must be initialized to 50 units below
the first row, since the buttons change the value of y
by 50 before starting a new row. That is, the
instructions are relative instructions, so there must be
an absolute instruction to initialize the y position.

The variable x need not be initialized since an absolute
instruction is used to set its value to −150 at the beginning
of each new row. The initialization is therefore as follows:

0. when the green flag is clicked
1. clear the stage
2. set the value of y below the first row −200
3. go to position (200, 150)

Step 3 is implemented using the instruction from the
dark green Pen palette.

244 Chapter 8

New construct in Scratch: clearing an image

The instruction erases all images that
have been stamped on the stage.

Exercise 4

Create the initialization script for the orange.
Check that the animation runs correctly. Add
comments and save the project.

Counting the total number of oranges

The game requires that we know the total number of
oranges that have been stamped on the stage so that the
prince (whom we have not yet created) can report if he has
enough oranges already or if the user should click on a
button to create more of them.

Task 2

Count and display the total number of oranges
that have been created.

Program file name: store-count

Numbers 245

The scripts that we have constructed so far look at oranges
from a local perspective: the orange sprite stamps only one
orange at a time, while the button sprites just know how
many oranges will be added as a result of clicking on the
button. We need to consider the number of oranges from a
global perspective: how many oranges have been created
from the start of the game? Let us define a variable that
will remember the total number of oranges that have been
created. Whenever a button is clicked, its value will be
changed by the number corresponding to that button.

Who is responsible for counting the
oranges

? Which sprite or sprites will be responsible for updating
the value of this variable?

One possibility is to have the orange sprite add one to the
variable each time that it stamps a new orange on the
stage. Alternatively, each button sprite could add one to
the variable each time that it sends a message to the orange
sprite. We prefer a third, higher-level, solution: whenever
the script for a button is run (because the sprite was
clicked), the value of the variable will be changed by the
number corresponding to the button. For example, if we
click on the 2 button, the value will be changed by 2, and if
we click on the 4 button, the value will be changed by 4.

246 Chapter 8

Since these instructions are relative instructions, it is
important that the value of the variable be given an initial
value. The initial value should be 0 because initially no
oranges have been created. It will be convenient to include
this initialization as part of the initialization instructions
run by the orange sprite when the green flag is clicked.

Exercise 5

Modify the project to include a variable oranges

for the total number of oranges. After creating
the variable, click the box by its reporter so that
its value is displayed on the stage. Add the
initialization instruction to the orange sprite
and instructions to the button sprites to change
the value of the variable. Check that the project
works, update the comments and save.

Accumulators

The variable oranges is being used as an accumulator.
Accumulators remember the total amount of something.
They are very familiar even if the word is not: the
odometer in a car remembers the total number of miles or
kilometers that the car has been driven. There is an
accumulator in your house that remembers the total
amount of kilowatt-hours of electricity that you have used.
Scoreboards at a sporting event are accumulators that

Numbers 247

remember the total number of points that each team has
scored. In a basketball game, initially each team has zero
points and each basket made causes the number of points
to increase by 1, 2 or 3, according to the type of the throw.

New concept: accumulator
A variable can be used as an accumulator in or-
der to remember the sum of a set of values. The
pattern of the use of the variable is as follows:
The variable is initialized to 0 and whenever an
event occurs, a value is added to the current
value of the variable.

While the initialization of an accumulator uses an absolute
instruction to set its value to zero, the variable is updated
using relative instructions which add new values to the
current value. In our game, the value added each time to
oranges will 2, 3, 4 or 5, depending on which button was
pressed.

Counters

A counter is an accumulator whose value changes by 1 each
time. An example would be a clicker that is used to count
the number of people on a bus. It is initialized to zero and
it is clicked once for each person on the bus, adding one to
the count. We could use a counter in this project to

248 Chapter 8

remember the number of times that a button is pressed to
create oranges rather than the total number of oranges. We
could also use a counter to remember the number of times
that an orange is stamped instead of using an accumulator
that adds the number of oranges created each time a
button is pressed.

New concept: counter
A variable can be used as a counter in order to
remember the number of times something hap-
pens. The pattern of the use of the variable is
as follows: The variable is initialized to 0 and
whenever a new event must be counted, 1 is
added to the current value of the variable.

The prince arrives: how many oranges
are there?

We now add the prince to the game.

Task 3

Modify the animation by adding a sprite for the
prince. He asks for 12 oranges at the start of the
game. After each click of a button, the prince
will announce the result: he has the right

Numbers 249

number of oranges, he has too few oranges or
he has too many oranges.

Program file name: prince-says-when-enough-oranges

The task can be broken down into two parts: asking for
oranges and checking the number of oranges. The first part
of the task is very simple:

0. when the green flag is clicked
1. say “Please give me 12 oranges” for 2 seconds

The second task requires that whenever a button is clicked
the prince compares the total number of oranges stored in
a variable with the value 12. Again, there is a need for
communications between sprites: the button sprites must
notify the prince sprite that a button has been clicked so
that he can compare of the new total number of oranges
with 12. Each button will send a message New batch when
it has completed changing the number of oranges. The
prince will receive this message and perform the
comparison:

0. when you receive the message New batch

1. if the total number of oranges is less than 12
1.1 say “Please give me more oranges” for 2 seconds

2. otherwise
2.1 if the number of oranges is greater than 12

250 Chapter 8

2.1.1 say “I’ve got too many oranges” for 2 seconds
2.2. otherwise

2.2.1 say “Thank you for the 12 oranges!!”

Comparing numbers

Let us now translate this description into Scratch scripts.
You already know enough Scratch constructs to do so,
except for the conditions of the conditional run
instructions in steps 1 and 2.1. Here the condition is similar
to comparing two numbers for equality that we used in the
previous chapter, except that we have to check whether
one number (the number of oranges) is less than or greater
than another (the value 12). Blocks for these comparisons
can be found in the light green Operators palette. Above
and below the block for equality, you can find operators
for less than and for greater than . These
blocks have angled ends and can be used as conditions in
conditional run instructions. The values to be compared
(the variable oranges and the number 12) are placed within
the windows of the conditions.

Numbers 251

New construct in Scratch: less than and
greater than

The condition is true if the value in the
left window is less than the value in the right
window. The condition is true if the
value in the left window is greater than the
value in the right window.

Exercise 6

Can we use just one of the conditions less than
or greater than to implement the comparisons in
step 1 and 2.1? If so, show how this can be
done.

Exercise 7

Complete the project for this game: Create the
sprite for the prince (use the costume prince1

from the People folder) and construct its scripts
as described above. Add broadcast

instructions to the sprites for the buttons and
use conditional run instructions in the script for
the prince. Write comments for these changes,
check that the project works and save it.

252 Chapter 8

Example 2
Changing the rules of the game—a
surprising button
Our game is rather predictable . . . let us now change the
rules of the game to add a bit of excitement.

Task 4

Modify the animation as follows. The prince
will ask for 12 oranges, but the number of
oranges that will be supplied (2, 3, 4, 5) will be
not be chosen by the user clicking on different
buttons. Instead, there will be only one button
labeled More. When the user clicks on this
button, the computer will randomly choose a
number between 2 and 5, and this is the number
of oranges that will be given to the prince.

Program file name: random-number-of-oranges

The progress of the game is no longer determined by the
user, but by the random selection of numbers by the
computer. This is not unfamiliar, because many games use
dice to determine the number of steps that a player moves
in each turn. Instead of cubes with numbers from 1
through 6, think of our dice as pyramids with the faces
labeled with the numbers 2, 3, 4, 5. (Those of you who play
the game Dungeons and Dragons will be familiar with dice
that are pyramids with four sides.)

Numbers 253

The behavior of the single button

In this version of the game, there will be orange and prince
sprites as before, but instead of four buttons labeled with
numbers, there will be one button labeled More. Its script
will be similar to that of the previous buttons except for the
random choice of the number of oranges:

0. when the More sprite is clicked
1. set the values of x and y to one position before the beginning of a new row
2. choose a random number between 2 and 5
3. run the following steps this random number

3.1 add a value to x so that it is at the next position in a row
3.2. inform the orange sprite to add a new image

4. add the random number to the total number of oranges
5. notify (the prince) that he has a new batch of oranges

Step 2 is implemented by the operator
, which appears in the light green

Operators palette. (The operator was introduced in
Example 5 of Chapter 7.) The random value that is read
will be remembered in a new variable how many:

Exercise 8

254 Chapter 8

Create a new project from the previous one by
adding a button labeled More. Make a new
variable how many for the random number of
times and check the small box so that its value
is displayed on the stage. Copy the script from
one of the old buttons and make the changes
needed so that it implements the above
description. Now you can delete the four
numbered buttons. Add comments to the new
button, check that the project works and save it.

? Do we need to make any changes to the scripts of the
prince and orange sprites?

Most of the responsibility for the game rests with the
button sprite, while the other two sprites have limited,
local, responsibility. The button sprite needs to compute
the position of the oranges and update the accumulator
that remembers the total number of oranges. The orange
sprite simply initializes the game and responds to
messages by stamping an image, while the prince simply
receives messages and says something. Therefore, the only
change to the orange sprite is to add an initialization of the
new variable how many.

Numbers 255

The prince becomes flexible: more than
12 oranges is OK

Let us make a small change to the game.

Task 5

After playing the game for a while, the prince
sees that it is unlikely that random numbers of
oranges will add up to exactly 12, so he has
agreed to be more flexible and to accept any
number of oranges between 12 and 14.

Program file name: prince-says-how-many-oranges

Exercise 9

Which sprites will be affected by this change?

The prince sprite is the only one that will be affected; his
new behavior is as follows:

0. when the green flag is clicked
1. say “Please give me between 12 and 14 oranges” for 2 seconds

0. when you receive the message New batch

1. if the total number of oranges is less than 12
1.1 say “Please give me more oranges” for 2 seconds

256 Chapter 8

2. otherwise
2.1 if the number of oranges is greater than 14

2.1.1 say “I’ve got too many oranges” for 2 seconds
2.2. otherwise

2.2.1 say “Thank you for giving me the number oranges I received!!”

Saying thank you politely

The changes are very simple, except that we want the
prince’s thank-you sentence in step 3.1 to be meaningful;
that is, we want him to thank us for exactly the number of
oranges he received. Previously, we just used the string
“Thank you for giving me 12 oranges!!”, but now we want
the sentence to change each time to “Thank you for giving
me [oranges] oranges!!”, where [oranges] is the value of
the variable oranges that counts the number of oranges he
received, whether 12 or 13 or 14.

One possibility would be to use a conditional run
instruction, checking if the number of oranges is 12, 13 or
14 and running an appropriate say instruction. However,
this would make the script very complicated and would
not be practical if the range were much larger, say, between
12 to 30 oranges. Instead, we want to compute the string
“Thank you for giving me [oranges] oranges!!” using the
value of the variable oranges.

Numbers 257

Joining two strings into one string

To create the polite thank-you string, we use the operator
which is the fifth block from the bottom in the light

green Operators palette. It creates a single string by
placing the contents of the two small windows one after
another. For example, if we join the string “Good” to the
string “morning”, we get “Goodmorning”. Of course, we
should have included a blank letter as the last letter of
“Good” or the first letter of “morning” in order to get
“Good morning”.

? What kind of things can we join together using the
join operator?

In the block, both windows have straight sides like the
windows in the conditions “=”, “<” and “>”. This means
that we can put different things in the windows: numbers,
strings, and even other blocks with rounded or pointed
sides. The values are joined together to make one string.
For example:

• results in the string “A340” (a type of
airplane);

• results in the string “54” that can also be
used as the number 54

• results in the string consisting of “A”
followed by the value currently contained in the
variable airplane.

258 Chapter 8

New construct in Scratch: joining strings and
numbers

The operator joins the string (or num-
ber) in the first window to the string (or num-
ber) in the second window. The result is the
same as if the two were written one after the
other. If both windows contain numbers, the
result can be used as a number.

Joining several strings into one string

We need to join three strings: the string “Thank you for ”
followed by the value of the variable oranges, followed by
the string “ oranges!!”. However, the block has
only two windows.

? How can we join three strings?

Whenever we want to add three numbers (perhaps using a
calculator), we first add two of them and then add the
third. That is, 8+3+2 is computed by adding 8+3 and then
adding 2 to the result. This is often written (8+3)+2 to
emphasize that first we add two numbers and then add the
third number to their sum. The join operator works like
addition: since the block has rounded ends, it can be used
itself in one of the windows of another join operator. In
fact, just as with addition, any number of things can be
joined one after another.

Numbers 259

We construct the string needed for the project in two steps.
First, join “Thank you for ” to the value of the variable
oranges. Drag the block for and drop it in an
empty place in the script area. Write “Thank you for ” in
the first window and drag the reporter for the variable
oranges into the second window. Make sure to leave a
space after the word “for” so that there will be a space
between it and the number of oranges. The block that
results should be . Click on the
word “join” in the block and you should see the string
“Thank you for [oranges]”, where [oranges] is the value of
that variable. This block can now be dragged and dropped
it into the window of a say block. This window has
straight edges so the join block with rounded edges can
be dropped there. Run the project and check that the
prince always politely thanks you for the correct number
of oranges.

In the following exercise you will complete the
construction of the string “Thank you for giving me
[oranges] oranges!!”.

Exercise 10

(a) Drag and drop a new block onto the
stage. Into the first window, drag-and-drop the
join block we constructed previously and in
the second window write the word “ oranges!!”
(again, note the space). The result is:

260 Chapter 8

Finally, drag the nested join block into the say

block. Run the project and check that the prince
says what we want him to. Add comments and
save the project.

Program file name: prince-says-with-join

(b) Is there another way to create the same
sentence? Hint: Is there another way of
computing 8+3+2 besides (8+3)+2?

Numbers 261

The prince is getting tired and doesn’t
want to talk so much

The prince has become more flexible but he feels that his
answers are too detailed.

Task 6

Modify the animation so that when oranges are
added by clicking the button, the prince will
respond in one of two ways: either he will
thank the user for giving him the correct
number of oranges (between 12 and 14) or he
will say “I don’t have the correct number of
oranges”.

Program file name: prince-says-with-compound-condition

The second response is ambiguous because it can result
from having too many or too few oranges; the user will
have to decide which of the two possibilities is intended.

Compound conditions

This change in the behavior of the prince allows us to
simplify his script. Previously, we had to take account of
three possibilities: less than 12 oranges, more than 14, or

262 Chapter 8

between 12 and 14. The script used a nested alternative
run:

if the number of oranges is less than 12
...
otherwise

if the number of oranges is greater than 14
...

otherwise
...

Now we only have two possibilities: between 12 and 14
oranges and not between 12 and 14 oranges; the alternative
run needed not be nested:

if the number of oranges is between 12 and 14
...

otherwise
...

The description of the behavior of the prince is now:

0. when you receive the message ”New batch”
1. if the total number of oranges is between 12 and 14

1.1 say “Thank you for giving me the number oranges I received!!”
2. otherwise

2.1 say “I don’t have the correct number of oranges”

Numbers 263

This description is very concise. In order to implement it,
we have to learn how to construct the condition “is
between 12 and 14” whose meaning can be expressed as
“greater than 11 and less than 15”. The compound
condition is built from two simpler conditions “greater
than 11” and “less than 15” and both of then must be true
for the compound condition to be true. For example, if the
number of oranges is 13, then both the condition “greater
than 11” and the condition “less than 15” are true, so the
compound condition is true. However, if the number of
oranges is 9, the second condition “less than 15” is true,
but not the first condition “greater than 11”. Therefore, the
compound condition is not true.

Exercise 11

Is the compound condition true when the
number of oranges is 17? Explain your
reasoning.

Exercise 12

Does there exist a number for which both parts
of the compound condition are false? If so, give
an example of such a number; if not, explain
why this cannot happen.

A compound conditions is built using the block
which has two small windows into which

264 Chapter 8

other conditions can be inserted. It is found in the middle
of the light green Operators palette. Both windows have
angled ends so that they can only have other conditions
inserted. The block itself has angled ends and is a
condition.

Exercise 13

Modify the second script of the prince to
implement the new behavior. Add comments
and save the project.

New concept: compound condition
A compound condition is formed from simple
or (other compound) conditions such as check-
ing equality or touching a sprite.
A compound condition can be created using
and, in which case the condition is true only if
both the conditions are true. Otherwise (if only
one simple condition is true or neither of them
is true), the compound condition is false.
A compound condition can be created using or,
in which case the condition is true only if either
or both of the conditions are true. Otherwise (if
neither of them are true), the compound condi-
tion is false.

Numbers 265

New construct in Scratch: compound condi-
tions with and and or

The instruction creates a com-
pound condition from two other conditions that
are placed within the windows. The compound
condition is true if both conditions are true.
The instruction creates a compound
condition from two other conditions that are
placed within the windows. The resulting con-
dition is true if either or both conditions are
true. (We did not use of this block in our ex-
amples.)

Example 3
Arranging the oranges in equal rows
The prince has decided that his pile of oranges should be
neat and tidy.

Task 7

Modify the project so all the rows have exactly
4 oranges in them, except for the last row which
may have fewer oranges.

Guidance: Start with the project from Example
2 where the prince asks for exactly 12 oranges
(file random-number-of-oranges).

266 Chapter 8

Program file name: oranges-in-piles

Let us work through an example: The prince initially
receives 3 oranges and they are placed in the first
(incomplete) row. Now the prince receives 2 oranges; the
first one is used to fill up the first row so that it has exactly
4 oranges, while the second one is used to start the second
row. On the third click, the prince receives 5 oranges; of
them, three fill up the second row while two appear in the
third row.

Computing the place of a new orange

The new requirement will cause changes in calculating the
position of the next orange to be stamped on the stage. In
our implementation, the responsibility for this calculation
belongs to the button sprite. The button started a new row
for each batch of oranges by setting the y-position to the
new row and the x-position to the start of the row.
Consider the description of the computation of the button
from Example 2:

0. when the More sprite is clicked
1. set the values of x and y to one position before the beginning of a new row
2. choose a random number between 2 and 5 and store in the variable how many

3. run the following steps how many times
3.1 add a value to x so that it is at the next position in a row

Numbers 267

3.2. inform the orange sprite to add a new image
4. add the value of how many to the accumulator variable oranges
5. notify (the prince) that he has a new batch of oranges

Step 1 is no longer needed because we no longer want to
start a new row each time the button is clicked. Instead, we
must modify Step 3.1 so that it computes (both) the x- and
y-positions of the next orange. The y-position is changed
only when a row has been filled up and this must be
checked for each individual orange that is processed, not
once at the beginning of a new batch. The computation of
the x-position will also change: it will return to the start of
a row only when the y-position is changed for that row.
The modified description is as follows:

0. when the More sprite is clicked
1. choose a random number between 2 and 5 and store in the variable how many

2. run the following steps how many times
2.1 if the current row is full

2.1.1 set y to the start of the next row
2.1.2 set x to one position before the start of a row

2.2 add a value to x so that it is at the next position in a row
2.3 inform the orange sprite to add a new image

3. add the value of how many to the accumulator variable oranges
4. notify (the prince) that he has a new batch of oranges

268 Chapter 8

Is the row full?

? How can the button sprite know that the row is full
(step 2.1)?

We need an additional variable to remember the position
in the row of the last orange that was stamped on the stage.
Let us call it last. For example, if there are already 3
oranges in the last row, the value of last will be 3, and if
the row is full, the value of last will be 4. The condition:

2.1 if the current row is full

can be implemented as:

2.1 if last is equal to 4

Whenever the button sprite informs the orange sprite to
stamp a new orange, it must change the value of the
variable last. If the orange starts a new row, the value of
last after the orange is stamped in the next row must be
set to 1; otherwise, its value must increase by 1.

Exercise 14

Change the description of the behavior of the
button sprite to include processing the variable
last. The value of last must be changed
whenever the value of x is changed, that is, for
each new orange to be stamped.

Numbers 269

The absolute instruction used to set x to a new
row (step 2.1.2) must be followed by an
absolute instruction to set last to its value at
the beginning of a row. The relative instruction
used to move x to a new position in a row (step
2.2) must be followed by the relative instruction
that adds 1 to last.

Checking the initializations

This change in the game will not affect the behavior of the
prince sprite, but we have to carefully check the behavior
of the orange sprite. In particular, the orange sprite is
responsible for initializing the project when the green flag
is clicked.

? What should be the initial value of the variable last?

The initial value of last should be 0 since we have not
stamped any oranges yet.

? What about the values of x and y?

The value of y is changed (step 2.1.1) only if the row is full
which is checked in step 2.1. Since last is initialized to 0,
the condition in 2.1 will be false and y will not be changed.
It follows that the initial value of y should be the y-position
of the first row of oranges −150.

Previously, we did not need to initialize x because its value
of always was set just before we stamped an orange. Now,
however, its value is only changed is the row is full (step

270 Chapter 8

2.1.2). Since initially the row is empty, this step will not be
run initially so we need to give an initial value to x: the
x-position of the first column −200.

Exercise 15

Modify the script for the button sprite as
described above. Make sure to first define the
variable last and initialize it. Check that the
project works correctly, add comments and save
the project.

Cyclical addition using remainder
(advanced)

In the following tasks, we will learn a new concept—cyclic
addition—but the animation itself will not be changed.

Task 8

Modify the scripts so that the computation of
the positions of the oranges uses cyclic addition
implemented with remainder.

Program file name: oranges-in-pile-with-mod

Numbers 271

Cyclic addition

? What are the possible values of the variable last?

It is initialized to 4 and becomes 0 immediately. On
subsequent clicks, 1 is added until its value become 4, after
which it is set to 0 again. Therefore, its value can only be 0,
1, 2, 3 or 4. These numbers represent the positions within a
row and since we specified that the number of oranges in a
row is at most 4, the variable last cannot have a larger
value.

In fact, the variable need not ever have the value 4. The
following image will help you follow the discussion in the
next paragraphs:

The image shows a row of four oranges and possible
values of the variable last. The meaning of last = 1 is that
the last orange was placed in the first position in the row
and the next orange will be placed in the second position.
Similarly, last = 2 means that last orange is in position 2
and the next will be in position 3, and last = 3 means that
last orange is in position 3 and the next will be in position
4.

? What about the values 0 and 4?

272 Chapter 8

last will get the value 4 when the orange is stamped in the
last position in the row and the next orange will be in
position 1 of the next row. The variable will receive the
value 0 in two cases: initially (when no orange is
displayed) and immediately after it receives the value 4:

if last is equal to 4
set last to 0

Therefore, the values 0 and 4 really mean the same thing
and we can use 0 alone without the value 4.

The values of last will change as follows: Initially it will
be 0 so that the next (first) orange will be in the first
position. When the first orange is stamped, its value will
become 1 to indicate that the next orange will be in
position 2. The value will increase to 2 and 3 after the
second and third oranges are stamped, meaning that the
next oranges will be in positions 3 and 4. After the last
orange is stamped in position 4, the value of last can be
directly set to 0 (meaning that the next orange will be in
the first position) without first being set to 4.

The values of last form a cycle 0, 1, 2, 3, 0, 1, 2, 3, 0, and so
on. Cyclical addition is like regular addition except that
when the length of the cycle is reached the value returns to
0. For a cycle of length 4, cyclical addition starts like
regular addition: 0+1=1, 1+1=2, 2+1=3; but for 3+1=4 the
value returns to 0 so we write 3+1=0.

Numbers 273

Modifying the scripts to use cyclic addition:

Using cyclical addition, we can simplify the description of
the behavior of the button sprite. After the change to use
the variable last, Steps 2.1–2.3 are:

2.1 if last is equal to 4
2.1.1 set y to the start of the next row
2.1.2 set x to one position before the start of a row
2.1.3 set last to 0

2.2 add a value to x so that it is at the next position in a row
2.3 add 1 to last

Now, since 4 is no longer a possible value, we can simplify
them to:

2.1 if last is equal to 0
2.1.1 set y to the start of the next row
2.1.2 set x to one position before the start of a row

2.2 add a value to x so that it is at the next position in a row
2.3 cyclically add 1 to last

Initially, last is 0 so the first orange will be stamped at the
beginning of the row and last will be set to 1. The next
two oranges will be stamped in the same row while last

receives the values 2 and 3. The fourth orange will be
stamped in the row and then last will receive the value
3+1, which equals 0 since the addition is done cyclically.
Now, steps 2.1, 2.1.1 and 2.1.2 ensure that the next orange
will be correctly stamped at the beginning of the row.

274 Chapter 8

How is cyclical addition implemented?

The values 0, 1, 2, 3 are exactly the values that are obtained
by dividing any number by 4 and looking at the remainder.
For example, when 16 is divided by 4 the remainder is 0,
17/4 leaves a remainder of 1, 18/4 leaves a remainder of 2,
19/4 leaves a remainder of 3 and 20/4 brings us back to a
remainder of 0. Consider now the values of the variable
last. It is initialized to 0 and 1 is added each time. If we
take the remainder after each addition, we obtain exactly
the values 0, 1, 2, 3:

remainder((0+1) / 4) = remainder(1/4) = 1,
remainder((1+1) / 4) = remainder(2/4) = 2,
remainder((2+1) / 4) = remainder(3/4) = 3,
remainder((3+1) / 4) = remainder(4 / 4) = 0.

We can implement step 2.3:

2.3 cyclically add 1 to last

by:

2.3 set last to the remainder of (last+1) divided by 4

The computation of the remainder is implemented by the
operator which appears as the third block from
the bottom in the light green Operators palette. It has two
windows: the first for the number being divided (in our
case, last+1), and the second for the divisor (in our case,
4).

Numbers 275

New concept: cyclic addition
When a variable takes a finite set of values 0,
1, 2, ..., N-1 for some N, cyclic addition can be
used. Addition is performed normally for all
values except the last one; for N-1, increasing its
value by one gives (N-1)+1 = N, which is then
changed in 0.
Cyclic addition is implemented by the operator
mod : (n + 1) mod N. For all values of n except
N-1, the result of the addition is a number less
than N, so its remainder equals n. For N-1, (N-
1)+1=N, and the remainder of dividing N by N
is 0.

New construct in Scratch: the mod operator

The operator computes the remainder
of the value in the first window divided by the
value in the second window.

Exercise 16

Use the mod operator to implement the version
of the game with cyclical addition in the script
for the button. Check that the project works
correctly, add comments and save the project.

276 Chapter 8

Additional Exercises

Exercise 17

This exercise is an extension of Exercise 6 from
Chapter 5.

a. Start with the animation of paragraph (b) of
that exercise and modify the behavior of the
three animals as follows: after an animal stops
moving, it says which animal it is closest to (“I
am closer to the cow”).

Guidance: Use the operator from
the Sensing palette to obtain the distance of one
sprite to another. This operator is explained in
detail in Chapter 11. Display the monitors for
the x-positions of the three animals so that you
can check the program runs correctly.

Program file name: play-run1

b. The problem with the animation in (a) is that
it doesn’t wait until all the animals have
stopped moving before reporting which
animals are closest to each other. Modify the
animation so that the the displays of all the
animals occur together when they all stop
moving.

Numbers 277

Guidance: Define three new variables
elephant-stopped, horse-stopped and
cow-stopped, which will be initialized to 0 and
set to 1 when the motion of the animal has
stopped. After an animal has stopped, it waits
until both other animals have stopped and only
then displays which animal is closer.

Program file name: play-run2

c. Modify the scripts for (b) to use compound
conditions (if you didn’t do so).

Program file name: play-run3

d. (Advanced) Modify the animation so that
one animal will say which pair of animals is
closest, for example: “The horse is closest to the
cow”.

Guidance: One of the animals—let us choose
the horse—will be responsible for comparing
the three distances (horse↔ cow, horse↔
elephant, cow↔ elephant) to see which is the
smallest. If we know those distances, we can
use nested conditional run instructions to
compare them and to display which is the
smallest.

The problem is that the horse cannot know the
distance cow↔ elephant because the operator

278 Chapter 8

distance to... only gives the distance from
the sprite that runs it to another sprite. The
solution is to define a new variable
cow-to-elephant and use it as a mailbox to
communicate this distance to the horse sprite.
Even though it is not necessary, you might also
want to define variables horse-to-cow and
horse-to-elephant to simplify the
comparisons.

Program file name: play-run4

Exercise 18

This exercise is an extension of Exercise 3(b)
from Chapter 6.

Define a trip as the movement of one dancer
from its side of the stage to the center or from
the center to the side.

a. In that exercise the user controls the number
of steps taken by each of the dancers. Modify
the program so that the user only controls the
number of steps that the dancer Cassy takes in
a trip. The number of steps that Jay takes in a
trip will be three times whatever you chose for
Cassy.

Program file name: dance-steps1

Numbers 279

b. Since the dancers dance at the same rate
(waiting 0.2 seconds between each movement),
if Jay takes three times as many steps per trip as
does Cassy, he should take only one-third the
number of trips during any period of time. Is
this true?

Guidance: You can simply watch the animation
and count the trips, but it is easier to add two
variables Cassy-trips and Jay-trips which
count the number of trips that each dancer
makes. Add monitors to the stage for these two
variables. Click the green flag, wait 30 seconds
and then click the red flag to stop the
animation. The value displayed in the monitor
for Jay should be one-third that of the value in
the monitor for Cassy.

Program file name: dance-steps2

c. (Advanced) Modify the animation so that the
program checks that Cassy takes three times as
many trips as does Jay. If not, Jay says “Help,
Cassy! I’m out of step!”.

Guidance: Write a script for the Jay sprite that
is activated whenever Jay completes a pair of
trips. The script will check if the number of
trips by Cassy equals three times the number of
trips by Jay; if not, Jays says that he is out of
step. How can you check if the solution works?

280 Chapter 8

Program file name: dance-steps3

d. (Advanced) Jay can’t be trusted, so Cassy
will say: “Jay! Get in step!” whenever she has
not taken three times as many steps as Jay.

Guidance: Your might think that Cassy should
compare her number of trips with that of Jay
after she finishes a pair of trips. But when that
happens Jay is still in the middle of his first trip.
Ensure that Cassy does the comparison only
after Jay has completed each pair of trips, at
which time Cassy has completed a multiple of
six trips.

Program file name: dance-steps4

Exercise 19

(Advanced) This exercise is an extension of
Exercise 4 from Chapter 6. In that exercise, we
created animations of rockets and investigated
how the animation changed depending on the
speed and acceleration of the rocket. Here, we
ask you to look at some numerical measures
and to explain them.

a. In each of the projects of the exercise count
the number of steps taken by the rocket. Why is

Numbers 281

the number of steps different in each of the
projects?

Guidance: Use a variable to count the number
of steps and display the monitor for the
variable.

Program file name: rocket1, rocket2, rocket3, rocket4

b. Count the number of times that the
conditional run instruction is run. Why are
these numbers different in each of the projects?

Program file name: rocket1a, rocket2a, rocket3a, rocket4a

Exercise 20

This exercise is an extension of Exercise 15 from
Chapter 7.

Expand the projects grass3 through grass6 of that
exercise so that they count and display the
number of times that the moving grasshopper
meets the second grasshopper and the third
grasshopper.

Program file name: grass1, grass2, grass3, grass4

Exercise 21

282 Chapter 8

This exercise is an extension of Exercise 15(a)
from Chapter 7.

a. The grasshopper moves randomly right and
left along the x-axis. In some runs it will move
farther away from the center than in others.
Modify the project so that it displays the
maximum value of the x-position.

Guidance: Create a variable MaxX to store the
maximum value of the x-position. Initialize it to
0 and set it with the value of x-position
whenever it is larger than the current value of
MaxX. Display the value of this variable.

Program file name: grass5

b. Display the maximum distance of the
grasshopper from the center of the stage,
whether it is to the left or the right of the center.

Guidance: No matter how far to the left the
grasshopper moves, the program in (a) will
never consider an x-position to the left of center
as the maximum value. The reason is that
x-positions to the left of center are negative
numbers. Since the current maximum value is
initialized to 0 and can only get larger, a
negative number will be ignored. For example,
if the farthest x-position to the right is 10 and
then the grasshopper moves to x-position 30 to

Numbers 283

the left of the center, 10 is larger than −30 so the
value current maximum will remain 10.

We need to compare the absolute values of the
x-positions. The absolute value of a variable is
defined by:

The absolute value of a is: a if a is
positive and −a if a is negative.

Thus abs(10) = 10 and
abs(−30) = −(−30) = 30. The absolute value
can be computed using the operator

which can be obtained from the last
block of the Operators palette .
Click on the first window where sqrt appears
and select abs from the menu.

Program file name: grass6

c. Modify the previous project so that after
every move the grasshopper turns by a random
number of degrees from −180 to 180. Compute
and display the maximum distances along both
the x- and y-axes.

Program file name: grass7

d. Modify the previous project so that instead
of computing and displaying separately the

284 Chapter 8

maximum distances along the two axes, the
maximum distance from the center of the stage
is computed and displayed.

Guidance: Create a very small sprite and place
it in the center of the stage. Then use

to compute the distance between
the grasshopper and the new sprite.

Alternatively, compute the difference between
the position of the center (0, 0) and the position
of the grasshopper. You will need to use the
operator .

Program file name: grass8, grass9

Exercise 22

This exercise is an extension of Exercise 16(d)
from Chapter 7.

Modify the project so that it computes and
displays how much time it takes for the three
pairs of flowers to find each other. The program
will be more interesting if the sprites are
smaller so that it takes longer for the pairs of
flowers to meet.

Guidance: Create two variables Time, which
counts the amount of time that has passed since
the animation starts, and Found, which counts

Numbers 285

the number of pairs that have touched each
other. Terminate the animation when Found

equals three.

Program file name: flowers1

Summary

Concepts

Numbers can be compared for equality and inequality:
greater than or less than.

Compound conditions can be created from simple
conditions (or other compound conditions). Given two
conditions Cond1 and Cond2, we can create a new condition
that is true only if both Cond1 and Cond2 are true or a new
condition that is true only if either Cond1 or Cond2 (or both)
are true.

An accumulator is a variable that is used to remember the
sum of a set of values. A counter is a variable that is used
to count the number of times that something happens. In
both cases, the initial value is 0 and an instruction changes
the value of the variable. For an accumulator, the
instruction adds a value, while for a counter, the
instruction adds 1 when something happens.

When the values of a variable are limited to a range 0, 1, 2,
..., N − 1, for some N, cyclical addition can be used on the

286 Chapter 8

variable to keep the values within this range. Cyclical
addition is the same as regular addition except that only
the remainder upon division by N is remembered. In
particular, if you add 1 to a value, the addition is as usual
except when the value of the variable is N − 1; in that case,
the value becomes 0 instead of N.

When there are multiple sprites and multiple scripts in
sprites, synchronization problems can arise. The problems
can often be solved by requiring a script sending a
message to wait (stop running) until the receiving scripts
finish running.

An image of a sprite can be stamped on the stage.

A string can be created by joining two or more other
strings or numbers.

Scratch instructions

The operators for inequality are greater than and
less than .

Compound conditions use the operators (both
conditions must be true) and (either or both
conditions must be true).

Remainder is implemented by the operator. (mod
is short for modulo, a technical term for remainder.)

The instruction is similar to the

except that the run of its script waits until

Numbers 287

the receiving scripts have been completed.

The instruction stamps an image of the sprite at its
current position.

The instruction erases all images of the sprite from
the stage.

The operator is used to create strings from other
strings (and numbers) by placing the strings one after the
other.

288 Chapter 8

Chapter 9

Lists—Remembering
Complex Information

The project for this chapter is an animation of a waiter
taking orders in a restaurant, where the user chooses items
from a menu. We will use a new construct in Scratch that is
like a variable for storing information but instead it can
store an ordered sequence of items, such as the list of
entries in a menu or the list that a waiter writes when we
order from a menu.

Example 1
What do you want to order?
The prince who asked us for oranges in Chapter 8
suddenly went bankrupt and has to earn a living as a
waiter!

289

290 Chapter 9

You enter the restaurant, examine the menu and call the
waiter over. He writes down your order and leaves the
stage to go into the kitchen and give them your order.
Unfortunately for you, the chef sometimes gets confused
and forgets to buy the ingredients for some of the entries
on the menu. If an entry you ordered is missing, the waiter
comes backs into the restaurant and informs you which
entry is not available.

Building the menu

We construct the project in stages, starting with displaying
the menu on the stage.

Task 1

Display three menus on the stage: one for the
main course, one for drinks and one for dessert.
The main course can be chicken, hamburger,
fish or taco; the drink can be cola, lemonade or
water; the dessert can be fruit, ice cream or pie.
In addition, display a page from the waiter’s
order book where he can write down your
order.

Program file name: import-list-contents

? How can we display the menu on the stage?

Lists—Remembering Complex Information 291

One possibility would be to display images of the various
menus like we did for the oranges. We could use the Paint
Editor to create images that are displayed on the
background. However, this approach is not suitable for
two reasons: First, given the confused state of the chef who
forgets what she needs to buy, we will have to change the
menus frequently during the animation and an image can’t
be changed. Second, we want to copy the entries that we
choose from the menus to the waiter’s order book.

What we need is a way of remembering the contents of a
menu together with the ability to copy entries from the
menu, change them and display them on the stage. This is
precisely what can be done with variables, but variables are
limited to remembering, copying, changing and displaying
single values, while we need to do these actions for three or
four values. Such an ordered sequence of multiple values
is called a list.

Creating a new list

Open a new project, initially without any sprites or scripts,
and go to the Variables palette. Recall that is
not a block that appears in scripts, but a button that creates
a variable—an area in memory for remembering a value.
Furthermore, when you create a variable for the first time,
a set of blocks appropriate for computing with variables
appears on the palette.

292 Chapter 9

Just below the button is another button
. This button works the same way except that it

creates lists instead of variables. Click now on this button.
A window will appear asking you for the name of the list;
choose an appropriate name, for example, Main for the list
of entries for the main course in the menu.

Several things now happen.
On the stage a rectangle representing
the list appears. At the top is the name
of the list, in the middle the items in the
list, and at the bottom the length, which
is the number of items in the list. Since
no items have been placed in the list, the
word (empty) appears in the middle of the rectangle and
the value of length will be zero. In addition, a set of blocks
appears in the red-orange Variables palette. The first block
is a reporter block that can be used to obtain the value
of the list. You can check the small square next to the
reporter block to display a monitor for the list. Initially,
this is checked and we leave it checked because we want
the user to see the list of menu entries in the list.

The other instructions for lists will be discussed later in
this chapter.

Exercise 1

Create three additional lists that are displayed
on the stage: Drink and Dessert for the menus

Lists—Remembering Complex Information 293

and My meal for a page from the waiter’s order
book.

Entering content into a list

Now we want to enter content into the menus: the names
of the different entries that can be ordered in each menu.
We have prepared three files, one for each of the three
menus. Here is how to copy the data from the files into the
lists that represent the menus:

• Move the mouse until the mouse cursor appears on a
rectangle representing a list, for example, the list for
main courses. Click the right mouse button.

• A menu with three items will open. Choose the
second item Import.... This causes a window to
appear; select a file that contains the entries for the
menu.

• The data for the file appear in the rectangle for the
list. To improve the visual appearance of the
rectangles, you can drag-and-drop them and you can
resize them by dragging the diagonal marks on the
lower right corner.

294 Chapter 9

Look in the files themselves. They are text files with one
row for each item in the menu: the file for the main courses
(main.txt) has four rows, the file for the drinks (drinks.txt)
has three rows, as does the file for the desserts (desserts.txt).
If you look closely at these files, you will see that there are
two spaces at the end of each row. These spaces will also
appear at the end of each row in the list. For example, the
first item in the menu for the main courses is “chicken ”
with nine letters including the two spaces. We have done
this on purpose in order to simplify part of the animation
as shown later.

Exercise 2

Import entries for the drinks and dessert menus
from the appropriate files.

So far, we have created four lists: a list of length 0 where
the waiter will write down the order, a list of length 4 that
contains the main courses, and two lists of length 3 with
the lists of drinks and desserts. Save this project.

Lists—Remembering Complex Information 295

New concept: lists
A list is a construct for remembering complex
data; it allows several related items to be saved
together. Each item in the list has a position
number, which is its place within the list. An
item can be added to an existing list, items can
be deleted from a list, and it is possible to read
items in the list by giving a position number
and asking what item is at that position. The
length of a list is the number of items in the list.

New construct in Scratch: creating a list

The button in the Variables palette
brings up a window where you give the name
of the list and select if it will be visible to all
sprites or only to the current sprite. The re-
porter block representing the value of the list
will appear on the palette. Check the small box
next to the reporter to display the monitor for
the list on the stage. The monitor is a rectan-
gle that displays the name of the list, the items
of the list in order of their position in the list,
and the length of the list. If this is the first list
that has been created, a set of blocks for the list
instructions will appear on the palette.

296 Chapter 9

New construct in Scratch: entering items into
a list from a file

Items can be entered into a list from a text file.
The file contains the sequence of items, one item
on each row. Right click on the rectangular
monitor for the list, and choose the entry Import

.... A window will appear from which a text file
can be selected. The items in the text file will be
entered into the list and they will appear in the
monitor.

Ordering a meal

Now we are ready to construct the animation by adding a
waiter sprite.

Task 2

Expand the animation by adding a button
labeled Order. When this button is clicked, the
waiter (who used to be a prince . . .) will appear
and take our order. First he will ask what we
want for our main course, then for our drink
and finally for our dessert. The waiter will
write the order in his order book and to confirm
that it is correct, he will say it back to us.

Lists—Remembering Complex Information 297

Program file name: prince-takes-order

We need two sprites for this project: the waiter and the
order button. The customer in the restaurant is the user of
the animation (that is, you) and need not be represented by
a sprite.

The customer calls the waiter

When you are ready to order, click the Order button. The
button sprite’s task is very simple: it just has to call the
waiter. We will give it an additional task: to cause a clean
page to appear in the waiter’s order book. Here is a
description of the behavior of the button:

0. when Order clicked
1. clear the order book
2. call the waiter

Step 2 can be done by sending a message.

? How shall we implement step 1?

Deleting items from a list

The current page in the order book is represented by a list.
To implement step 1 (clear the order book) we have to delete
all the items in the list.

298 Chapter 9

The instruction deletes the item
described in the first window from the list whose name is
given in the second window. Clicking on the arrow in the
second window causes a menu of all the known lists in the
project to appear; we have only one list called Menu so it
must be chosen. The first window has more possibilities:
you can click on the window and type in the position of
the item that you want to delete; alternatively, you can
select one of three entries:

• 1: delete the first item in the list;

• last: delete the last item in the list;

• all: delete all the items from the list.

Exercise 3

Create a script for the Order button that
implements the behavior described above.

Lists—Remembering Complex Information 299

New construct in Scratch: deleting an item or
items from a list

The instruction deletes an
item or items from the list whose name appears
in the second window. The item(s) to delete are
given in the first window: If a number (or any
block for a value) is entered, the item deleted is
the one with that position number. (If the num-
ber is larger than the length of the list, nothing
will happen.) The first window also has three
menu entries that can be selected by clicking
on the small arrow: 1 to delete the first item,
last to delete the last item, and all to delete all
the items (after which the list will be empty, of
length 0).

The waiter arrives

After the user clicks on the Order button, the waiter sprite
receives the message that is broadcast by the button sprite.
He asks for the order, writes it down in his order book and
repeats the order to the customer. Here is a description of
the waiter’s behavior:

0. when you receive the message that you are called
1. appear before the customer

300 Chapter 9

2. ask the customer what he would like for his main course
3. write his answer in your order book
4. ask the customer what he would like to drink
5. write his answer in your order book
6. ask the customer what he would like for dessert
7. write his answer in your order book
8. repeat the order back to the customer
9. go to the kitchen

We do not yet know the Scratch instructions for steps 2
through 7, where a dialog is carried out between the
customer and the waiter, and the waiter writes down the
answers in his order book. In steps 1 and 9, the waiter
comes in from the kitchen and returns there. For simplicity,
the kitchen is not part of the animation on the stage, so it is
enough that the waiter appears and disappears. We can

use the instructions and from the Looks

palette (Chapter 7).

Exercise 4

Begin to build the script for the waiter with
blocks for steps 0, 1, and 9.

The image for the waiter will be that of the
prince from Chapter 8. You may want to change
the sprite’s name from Prince to Waiter.

There are two more parts to implement in order to obtain a
working program: Asking and obtaining a order,

Lists—Remembering Complex Information 301

represented by the three pairs of steps (2,3), (4,5), (6,7) and
repeating the order (step 8). We choose to implement step
8 first; assume for now that steps 2–7 are already
implemented so that the list contains three items, one for
each course.

302 Chapter 9

Reading the contents of a list

When the customer has finished ordering, the food that he
ordered will appear in the list that the waiter write:

For step 8, we can use the say instruction.

? What should the waiter say?

The waiter has to read the
values of the items in the list to
say the order. This is very similar
to reading a variable and using its
value, except that the value is the
entire list. For this Example, we
could use the reporter for the list
Menu, but in future projects we will need to obtain the
values individual items of the list, so we will implement
step 8 in a different way.

In more detail, step 8 will be:

8.1 get the name of the main course

Lists—Remembering Complex Information 303

8.2 get the name of the drink
8.3 get the name of the dessert
8.4 compose a sentence from the three names
8.5 say the sentence

The block that appears in the Variables
palette can be used to read individual items from a list. In
the first window, we enter position number of the item that
we want to read. This can be a number or a value, or it can
be the value 1 or the value last chosen by clicking on the
small arrow. In the second window, we choose the list
whose item we want to read.

is a value block whose value is the item
at the place in the list given in the first window. Therefore,
we can use this block in any instruction that takes a value,
including, in particular, the instruction.

However, step 8.4 asks us to compose a single sentence
from the names of the three courses. To obtain this
sentence, we use the operator that we learned
about in Chapter 8. Use this operator twice, once to join
the name of the main course and the name of the drink,
and the second time to join the name of the desert to the
value that results. Recall, that when we wrote the names of
the entries in the files for the lists, we added two spaces at
the end of each row; this ensures that when we join the
names there will be spaces between each name.

304 Chapter 9

New construct in Scratch: reading the contents
of a list

The instruction reads the
value of an item in a list. The list is chosen from
the menu in the second window and the value
of the block is the item in that list whose posi-
tion is given in the first window. The position
can be:

• 1 or a numeric value: the value of the
block is the item at that position, pro-
vided that the position number is less
than or equal to the length of the list; if
the position number is greater than the
length, the value of the block is empty;

• last: the last item in the list;

• any: a randomly chosen item from the list.

Exercise 5

Implement step 8 in waiter’s script.

Lists—Remembering Complex Information 305

A dialogue: the waiter asks and the
customer answers

In steps 2 through 7 a dialogue takes place between the
waiter and the customer. The waiter asks a question, the
customer answers and the waiter writes the answer in his
order book. This takes place three times, once for each
course.

? How can we translate this into instructions in Scratch?

The waiter and the customer could use say instructions to
ask the question and give the answer, but this will not give
the correct behavior.

? Why?

First, we don’t know in advance what the customer will
choose for each course, so we can’t write the appropriate
instructions. Second, the say instruction only affects what
is seen on the computer screen by the user, but it has no
effect on the computation itself. In our case, we want to
use the customer’s answers in order to write entries in the
waiter’s order book.

The instruction allows us to ask a question
and receive the user’s answer as part of the computation
during an animation. It is the fourth block from the top
light of the blue Sensing palette. The window is used for
the text of the question.

306 Chapter 9

Let us see how this instruction
works. Drag it onto the
script area but don’t connect it
to any other blocks. Enter some
appropriate text in the window,
for example, “What do you
want for your main course?”
Double-click on the block. You will see the question that
you entered appear in a bubble next to the sprite just like
in a say instruction. At the bottom of the stage a long
narrow frame will appear:

Type in your answer in the frame and then press the Enter

key on your keyboard or click the check mark in the frame.
The frame will now disappear.

We will be using the customer’s answers to choose items
within a list, so the answers must be position numbers that
can be used in the instructions that read items of the list.
For instructions, the position numbers
must be values that can be entered into the first window of
the block. For example, if you want chicken as your main
course, you should type in the number 1, while if you want
hamburger, type 2, and so on. Of course, the number must
be less than or equal to the length of the list (4 for the main
course and 3 for the others).

Lists—Remembering Complex Information 307

Exercise 6

Implement steps 2, 4 and 6 by adding ask

instructions to the waiter’s script.

Obtaining the answers to questions

? What happens to the answer that is typed in when a
question is asked?

? How can we use the answer in a computation?

Scratch automatically saves the answer to a question into a
variable called answer. This variable is built into Scratch
just like the variables for the size of a sprite or its current
costume, so you don’t need to create it. The reporter block

appears just below the block for the ask

instruction in the Sensing palette. As with all variables,
there is a small box next to the block; if you check it, a
monitor for the variable will appear on the stage.

Modifying a list: adding an item to a list

All three of the customer’s answers must be written in the
waiter’s order book, that is, the answers have to be added
as items to the list. Steps 3, 5 and 7 can be described as
follows:

add the menu entry indicated by the variable answer to the list for the order book

308 Chapter 9

This can be implemented using the instruction
which adds the item in the first window

to the list whose name appears in the second window. In
our case, the second window will contain the name of the
list My meal.

? What should appear in the first window?

Recall, that the customer answers each of the waiter’s
questions with a number, which is the position of the entry
in the menu. Some restaurants have fixed menus, so the
waiter need only write down a number and the chef
knows what dish that number refers to. However, in this
gourmet restaurant, the menu changes frequently, so the
waiter needs to write down the entry itself (chicken or
hamburger and so on), not just the number.

? How can we go from a position number to an entry in
the list?

We have just learned the instruction that does this:
. In the second window, select the name

of the correct list: in step 3 this will be the menu for the
main course, in step 5, the menu for the drink and in step
7, the menu for the dessert. In the first window, enter the
position number of the entry that the customer selected.
But this is exactly what has been remembered in the
variable answer each time that the ask instruction is run.

Exercise 7

Add to the waiter’s script the instructions

Lists—Remembering Complex Information 309

needed to implement steps 3, 5 and 7.

New construct in Scratch: conducting a dia-
logue

The instruction causes the con-
tents of the first window to appear on the stage
along with a frame for entering an answer. If
there is a sprite on the stage, the contents of
the window will appear in a bubble above the
sprite; otherwise, the contents will appear in
the answer frame.
The animation stops until the user has used the
keyboard to enter text in the answer frame and
pressed the Enter key or clicked on the check
button. Then, the frame disappears and the an-
imation continues.
The text that the user has entered is remem-
bered in the variable . Each time that
an ask instruction is run, the new answer re-
places the old contents of the variable.

310 Chapter 9

New construct in Scratch: adding an item to a
list

The instruction causes the
value in the first window to be added to the
list whose name is given in the second window.
The item is added at the end of the list and the
length of the list is increased by one.

Initializations

To finish the task, let us check the initialization. The scripts
for the Order button are run when the button is pressed
and the script for the waiter is run when he receives a
message from the button.

? Do we need to run any instructions when the green flag
is pressed?

The menus, together with the order book, are already on
the stage when the animation begins, but if this is not the
first time that the animation is run there might be a
previous order in the order book (list My meal). The Order

button opens a new page by deleting the items in My meal,
but we would like My meal to be empty when the
animation starts. Since the Order button is already
responsible for the order book, we will also give it the
responsibility of clearing My meal when the green flag is

Lists—Remembering Complex Information 311

clicked. Here is the behavior of this script:

0. when the green flag is clicked
1. clear the page in the order book stage

or, in more detail:

0. when the green flag is clicked
1. delete all the elements of the list My meal

Exercise 8

Add the initialization script to the Order button
sprite.

This is not the only initialization that has to be done. When
a Scratch animation is run all the sprites appear on the
stage initially. However, we have decided that the waiter
will not appear on the stage until the customer has looked
at the menu and decided that he wants to order by
pressing the Order button. Therefore, the waiter sprite
must perform the following initialization:

0. when the green flag is clicked
1. hide your image

Exercise 9

Add the initialization script to the waiter sprite.

Add comments to the project, save it under a new name
and try to run it.

312 Chapter 9

Sorry, sir, we don’t have that

As we mentioned at the beginning of the chapter, the chef
gets confused sometimes and forgets to buy the necessary
ingredients for some of the entries on the menu.
Unfortunately, it is the poor waiter who has to deal with
this situation. After he gives the order to the chef and finds
out that something is missing, he must return to the
customer and ask him to choose an alternate entry. Let us
assume that every order has something missing so the
waiter will always have to return to the customer.

Task 3

Extend the animation as follows: after the
waiter takes the order and disappears, he will
reappear and tell the customer that one of his
entries is missing. The missing entry (the main
course, the drink or the dessert) will be chosen
randomly. The customer can now click the
Order button again and select three new entries.

Program file name: choice-not-available

First solution

From the definition of the task we can extend the behavior
of the waiter as follows:

Lists—Remembering Complex Information 313

10. wait a bit in the kitchen
11. return to the customer
12. randomly choose which entry is missing
13. tell the customer that this entry is missing
14. open a clean page in the order book
15. explain to the customer that he can order again by clicking the Order button
16. return to the kitchen

Exercise 10

Extend the waiter’s script to implement the
behavior described in steps 10-16. Step 12 can
be implemented by selecting a random number
between 1 and 3.

Exercise 11

Does the extended script require any changes in
the initialization? Explain your answer. If
changes are required, modify the script.

Add comments to the project, save it under a new name
and try to run it.

Extending the solution—update the menus
before taking a new order

It is very thoughtful of the waiter to agree to take a new
order, but he would help the customer if the menus were

314 Chapter 9

changed so that they do not show the missing entry.

Task 4

Extend the project as follows: after the waiter
tells the customer about the missing entry, and
before he asks him to click the Order button
again, the waiter will delete the missing entry
from the appropriate menu.

Program file name: delete-a-menu-element1

In order to solve this task we have to extend the second
part of the description of the waiter’s behavior by adding a
line that deals with deleting an entry from the menu (line
15):

10. wait a bit in the kitchen
11. return to the customer
12. randomly choose which entry is missing
13. tell the customer that this entry is missing
14. open a clean page in the order book
15. delete the missing entry from the appropriate menu
16. explain to the customer that he can order again by clicking the Order button
17. return to the kitchen

Step 15 is actually quite complex because the menu that
has to be modified depends on which entry is missing. In
more detail, step 15 is:

Lists—Remembering Complex Information 315

15.1 if the missing entry is a main course
15.1.1 delete the entry from the main course menu

15.2 otherwise
15.2.1 if the missing entry is a drink

15.2.1.1 delete the entry from the drink menu
15.2.2 otherwise (the the dessert is the only possibility left)

15.2.2.1 delete the entry from the dessert menu

This behavior can be implemented using a conditional run
instructions. The entry which is missing is selected in line
12. The order of the entries in the order book is the same as
the order of the menus on the stage, which is also the order
in which the waiter asked the customer for his order. That
is, if the selected entry is 1 then the main course is missing,
if the selected entry is 2 then the drink is missing, and if
the selected entry is 3 then the dessert is missing.

A menu is represented by a list, so deleting an entry of the
menu means to delete an item from the list. We have
already learned the Scratch instruction for deleting from a
list , although we used it to delete all the
items in a list. The same instruction can be used to delete
any specific item by giving its position number in the first
window.

For example, if the entry
to delete from the main course menu
is taco whose position number is 4, then
delete 4 of Main will delete it and

316 Chapter 9

the length of the list decreases by one.

? What if the entry to be deleted is from
the middle of the list (say hamburger)?

We do not want empty items to appear in the list so the
items after the one that was deleted must move up one
place. Fortunately, the delete instruction does this
automatically.

We need three delete instructions, one to implement each
of the steps 15.1.1, 15.2.1.1, 15.2.2.1. For each instruction,
select the appropriate list in the second window.

We have a problem

Suppose that the customer chose hamburger as the main
course and that is the missing entry. The delete

instruction must contain the value 2, which is the position
number of the item hamburger in the list. When the waiter
sprite receives the number of the entry from the customer
it is stored in the variable . The value of this
variable is used to insert hamburger in the list representing
the order book. However, what is stored in the order book
is the entry hamburger and not its position. The position
renames in the variable answer.

Unfortunately, by the time that the waiter needs to delete
hamburger from the menu, its position has been erased
from , because that variable was later used to
store the positions for the drink and dessert courses when

Lists—Remembering Complex Information 317

the waiter continued to take the order from the customer.

? Given an entry like hamburger, how can we find its
position number?

There are two ways of solving this problem: When the
waiter says that an entry like hamburger is missing, we
can search for its position number within the list of main
courses. Alternatively, we can remember—in additional
variables—the position numbers of each item that the
customer has ordered. Here we implement the second
solution and leave the first solution until later in the
chapter.

Exercise 12

Modify the description of the waiter’s behavior
so that answers are stored in additional
variables and then used in step 15.

Modify the waiter’s script to implement the
new behavior: make three additional variables
for remembering the answers of the customer.
Add the appropriate instructions to store the
answers and then to use the answer to
implement step 15. Write comments and save
the project under a new name.

318 Chapter 9

Restoring the menus

Fortunately for the customers of the restaurant, whenever
the chef discovers that some ingredient is missing, she
sends her assistant to the market to buy it. When the
ingredient arrives, we would like the menus to be restored
to their original state with all the entries. The owner of the
restaurant has invested in a robot whose task is to restore
the menus.

The menus can always be restored by
re-importing the text files, just as you did when
you created this project. Although we will now
develop a program with a button to reset the
menus, there is a lot to be said for reseting
menus from files. The owners of the restaurant
should not have to understand anything about
lists or how they are implemented in a program.
That is your job as a software developer. It will
be much better if they can change the menus
just by typing files with the entries of the menu.

Task 5

Extend the animation as follows: Add a sprite
for a robot. Whenever the robot is clicked it
rebuilds the menus so that they are restored to
the way they were at the start of the animation.

Lists—Remembering Complex Information 319

Program file name: restore-all

Continuing our discussion above, it would be
nice if the robot could read the menus from text
files; however, there is no instruction in Scratch
that allows a sprite to read a text file and
initialize a list with the contents of the file. This
can only be done by the programmer using
Import button. That is why we have to add the
items one by one to the list.

A first attempt

? What should be the behavior of the robot?

Whenever an item is added to a list, it is added to the list
even if it is already there. Suppose that the robot tries to add
the three entries in the drinks menu and suppose that cola
is missing, but water and lemonade are still there. The
result will be a list with 5 entries: water, lemonade, cola,
water, lemonade.

? How can we prevent this from happening?

Before the robot adds the entries again, it must first clear
the list to make sure that there will be no duplicate entries.
Here is a description of the behavior of the robot:

320 Chapter 9

0. when Robot sprite is clicked
1. delete all the entries from the main course menu
2. add the four entries for the main course to the menu
3. delete all the entries from the drink menu
4. add the three entries for the drink to the menu
5. delete all the entries from the dessert menu
6. add the three entries for the dessert to the menu

Exercise 13

Implement the behavior of the robot.

Guidance: Choose an image for the robot sprite
(for example robot3 in the folder Fantasy) and
give the sprite an appropriate name. Note that
steps 2, 4 and 6 must be implemented by more
than one instruction. Write comments and save
the project under a new name.

A better solution: whatever is there, is there

The robot is doing unnecessary work. Why should it delete
entries from that are still on the menu? It makes more
sense just to add entries that are actually missing. That is,
we want the behavior of the robot to be as follows:

0. when Robot sprite is clicked
1. for each menu entry

Lists—Remembering Complex Information 321

1.1 if this entry is missing from its menu
1.1.1 add it to the menu

Step 1 is hiding a large number of steps, one for each menu
entry, and these have to be written separately. For
example, for the entry chicken, the steps have to be:

if chicken is missing from the main course menu
add chicken to the main course menu

and for hamburger, the steps are:

if hamburger is missing from the main course menu
add hamburger to the main course menu

Checking if an item belongs to a list

The condition checks if an item belongs
to a list; it appears as the last block in the Variables palette.
The condition is true if the list whose name is given in the
first window contains the value given in the second
window and the condition is false if the the list does not
contain the value. The block can be used whenever a
condition is needed, for example, in an if-then

instruction or a repeat until instruction.

322 Chapter 9

New construct in Scratch: checking if an item
belongs to a list

The condition is true if the
list whose name is given in the first window
contains the value given in the second window.
If the item is not in the list, the condition is false.

The opposite condition—negating a condition

The robot is interested in finding out in what entries are
not in the menus, so the descriptions above should be
written as follows:

if it is not true that chicken is in the main course menu
add chicken to the main course menu

if it is not true that hamburger is in the main course menu
add hamburger to the main course menu

In order to use the condition contains , we have to negate
it, that is, we need an operator with the following property:

Apply the operator negate to the condition
Main contains chicken.

• The result is true if the condition Main

contains chicken is false;

Lists—Remembering Complex Information 323

• The result is false if the condition Main

contains chicken is true.

The operator implements negation. If you place a
condition in the window of the operator, the resulting
condition will be the negation of the one in the window.
The operator is itself a condition. The following block
implements the condition concerning chicken:

.

324 Chapter 9

Exercise 14

Implement the full behavior of the robot using
condition blocks. Check that it runs correctly,
write comments and save the project.

Program file name: restock-missing

New construct in Scratch: negation

The condition is the negation of the
condition given in the window. (not c) is true
if c is true and it is false if c is true.

Searching for the place of an item in a
list

To conclude this chapter, we will improve on one of the
projects that we constructed earlier and show how to
search for the place of an item in a list. Recall, that when
the waiter notifies the customer that a menu entry is
missing, the waiter is also responsible for erasing that
entry from the menu. The waiter remembers in variables
the answers of the customer (the places of the chosen items
in the lists), so it is easy for him to delete the missing item
in the menu corresponding to the missing entry.

Lists—Remembering Complex Information 325

There is another way to solve the problem and that is to
search for the item by name in the list representing the
menu. This solution does not require that the waiter
remember the answers of the customer; instead, we will
give the responsibility for deleting items from the menu to
the chef. After all, she was the one who ran out the
ingredients!

Task 6

Modify the animation for Task 4 so that deleting
a menu entry will be carried out by the chef.
She will come onto the stage from the kitchen,
search for the missing entry and delete it from
the menu. Then she will return to the kitchen.

Program file name: delete-a-menu-element2

What is left for the waiter to do?

Although we place the responsibility for locating the
missing entry with the chef, we still need the waiter to tell
her to do so. The behavior of the waiter is changed by
replacing step 15 with the following steps:

15.1 if the missing entry is the main course
15.1.1 tell the chef to correct the menu for the main course

15.2 otherwise

326 Chapter 9

15.2.1 if the missing entry is the drink
15.2.1.1 tell the chef to correct the menu for the drinks

15.2.2 otherwise
15.2.2.1. if the missing entry is the dessert

15.2.2.1.1 tell the chef to correct the menu for the desserts

As usual, communications between sprites can be
implemented by sending and receiving messages from one
sprite to another.

Exercise 15

Modify the script of the waiter to implement
the new steps 15. The variables used to store
the customer’s answers are no longer necessary
and can be deleted.

The tasks of the chef

Since the kitchen is not visible on the stage, we will not
animate the tasty cooking that the chef does, just the
appearance of the chef on the stage and correction of the
menus. The chef will correct the menus when she is
notified to do so by the waiter. Since there are three
separate notifications, one for each menu, the waiter will
send three different messages, and the chef will need three
scripts, one for receiving each message. We will discuss
how to correct the menu for the main course and leave the

Lists—Remembering Complex Information 327

other courses for you to do. Here is an outline of the chef’s
behavior:

0. when the message delete an entry from the main course menu is received
1. go from the kitchen to the dining room
2. search for the place of the missing entry in the menu for the main course
3. delete this entry from the menu
4. wait two seconds
5. return to the kitchen

You already know enough about programming in Scratch
to implement this behavior, except for the search in step 2.

How to search for an item in a list

The chef has to know the name of the menu she has to
search and the name of the entry that she is searching for;
for example, search for hamburger in the list Main. The
waiter sprite is the one who knows which entry has to be
deleted. If the waiter remembered which course is missing
and which entry from that course, the chef can use these
values to delete the entry. For now, let us assume that this
is so; later you can check if the behavior the waiter has to
be modified.

When the chef knows these two pieces of information: the
course and the entry within the course, she can go to the
menu for that course and search the entries one by one
until she finds the missing one. She starts with the first

328 Chapter 9

entry, then the second one and so on until she reaches the
last entry. We can be sure that the search will be successful
because the missing entry is one that the customer chose
and it must have been visible in the menu. Here is a
preliminary description of the behavior of the chef for the
main course:

read the first entry for the main course
run until the entry you are reading is the missing one

read the next entry for the main course

If fact, this description will work when you need to search
any list, not just the menus in the restaurant in our project:

read the first item in the list
run until the item you are reading is the one you are searching for

read the next item in the list

This description is not yet detailed enough to enable us to
implement the search. What is missing is an explanation of
how to go from reading one item in a list to the next item.
To do this, we need a new variable, one that will keep track
of how far the search has progressed in the list. Let us call
this variable position. Its initial value will be 1 since we
start the search by reading the first item in the list. By
increasing the value of position we can read the next item
in the list.

initialize the value of position to 1

Lists—Remembering Complex Information 329

run until the item at position in the list is the one you are searching for
add 1 to position

The repeated run terminates when it finds the position in
the list with the item that is searched for. The variable
position will hold this position number.

Note how the variable is used: it is initialized to 1 and and
is increased by 1 each time that the repeated run is run.
This pattern of use is characteristic of variables that are
used when searching through a list; they are called
position variables.

Trace the description of the behavior for each of the entries
in the Main menu: chicken, hamburger, fish, taco.

Exercise 16

In Chapter 6 we learned other patterns of using
variables: accumulators and counters (which are
a form of accumulators). Compare the
position-variable pattern with these other
patterns.

Here is a description of the behavior of the chef that is
concerned with the search:

initialize the variable position to 1
run repeatedly until the item at the position

whose value is that of the variable position is the missing entry
increase the value of the variable position by 1

330 Chapter 9

When we place these steps within the full description of
the behavior of the chef, we get the following list of steps:

0. when the message delete an entry from the main course menu is received
1. go from the kitchen to the dining room (shown on the stage)
2. initialize the variable position to 1
3. run repeatedly until the item at the position

whose value is that of the variable position is the missing entry
3.1 increase the value of the variable position by 1

4. delete this entry from the menu
5. wait two seconds
6. return to the kitchen

Exercise 17

Implement the behavior of the chef for deleting
an entry from the the three menus.

Guidance: Choose an appropriate image for the
chef sprite from the People folder. The variable
position need only be visible to the chef sprite,
since only the chef performs the search.

Exercise 18

Does the addition of the chef sprite require any
changes in the initializations of the other
sprites? Explain your answer. If you think that

Lists—Remembering Complex Information 331

changes are needed, make the changes in the
scripts, write comments and save the project
under a new name.

Exercise 19

There is another possibility for dividing the
responsibility for the menus between the waiter
and the chef sprites. Instead of having the
waiter decide which menu needs to be changed
and sending an appropriate message to the
chef, the waiter will simply send a message to
the chef that a change is needed. The chef will
decide which menu to change. Modify the
descriptions of the behaviors of the sprites to fit
this approach, and implement the appropriate
scripts.

New concept: searching a list
Given a list and a value, the search problem is
to discover if the value exists in the list and, if
so, at which position. If the value does not ap-
pear in the list, an appropriate message will be
displayed.

Additional exercises

Exercise 20

332 Chapter 9

a. Consider the project in file search1. It has one
sprite: a math teacher. When the green flag is
clicked, a list of ten numbers will be displayed
on the stage. The numbers are randomly
selected from the range 1 to 10. The teacher
asks the user for a number, searches for it in the
list and notifies the user of the position in the list
where that number was found. Run the
program several times: for first number in the
list, the fifth number in the list and the last
number in the list.

What happens if the number in the fifth or last
places also appears earlier in the list? What
happens if a number does not appear in the list?

Guidance: It will be easier to understand the
runs of the program if you display a monitor
for the position variable.

Program file name: search1

b. It seems that the problem of searching is
more complicated than we first thought. When
we searched for an item in the menu, we were
assured that (i) the item appeared only once
and (ii) the item actually appeared. Neither of
these conditions is necessarily true.

Modify the project so that the teacher notifies
the user if the item does not appear in the list.

Lists—Remembering Complex Information 333

Guidance: Use fixed repeated run instead of
conditional repeated run to ensure that the
teacher does not search beyond the end of the
list.

Program file name: search2

c. Run our solution for the previous exercise
and enter a number which appears in the list.
The teacher notifies the user where the number
appears, but he also gives a notification that the
number does not appear! Explain why this
happens and fix the program.

Program file name: search3

d. Since the numbers in the list are generated
randomly, one number might appear several
times. Construct a project where the teacher
notifies the user of all the positions where the
number that is entered appears.

Program file name: search4

e. Run our solution for the previous exercise
and enter a number which appears in the list.
The teacher notifies the user where the number
appears, but he also gives a notification that the

334 Chapter 9

number does not appear! Explain why this
happens and fix the program.

Guidance: Use an additional variable.

Program file name: search5

f. Construct a different solution for (b). The
problem we had resulted from the use of a fixed
repeated run instruction instead of a
conditional repeated run instruction. Solve the
exercise using a conditional repeated run
instruction with a compound condition

.

Guidance: One part of the condition will check
if the number has been found and the other will
check if the end of the list has been reached.

Program file name: search6

g. (Advanced) Here is another very elegant way
to search for a value without running into the
problem of searching beyond the end of the list.
Add the number you are searching for as an
additional (11th) element in the list. That way,
you will always find the number you are
looking for! In order to decide what notification
to display, all you have to do is to check if you
found the number you are searching for at

Lists—Remembering Complex Information 335

position 11 (meaning that it wasn’t in the
original list), or at a position that is less than 11
(meaning that it was in the original list). This
method of searching is called a sentinel search
and is widely used because it is both efficient
and safe.

Program file name: search7

Summary

Concepts

Lists are structures that can remember several values. A
list is like an expandable box that is divided into
compartments each of which can be used to store a value.
We can add compartments or reduce the number of
compartments. The current number of compartments at
any time is called the length of the list.

Operators on a list are: add an item, delete an item or
items, read an item, check if a list contains a certain item.

To search for the position of the specific item that exists in
a list, position variable is used: it is initialized to 1 and
then the item at each successive position in the list is read
to determine if it is the one being searched for. After
checking each item, 1 is added to the position variable so

336 Chapter 9

that the next item can be read. If the item is not found, a
message is displayed.

Given a condition Cond, the negation of Cond is true if Cond
is false; the negation of Cond is false if Cond is true.

A dialogue can be carried out: a sprite asks a question and
the user returns an answer.

Scratch instructions

The list operators are:

• : add an item;

• : delete an item or items;

• : read an item (this is a value block);

• : check if a list contains a certain
item (this is a condition).

The condition block gives the negation of the
condition in the window.

A dialogue can be carried out using the instruction
from the Sensing palette. The text in the

window is displayed and the run of the script stops until
the user enters an answer. The answer is remembered in
the variable .

Lists—Remembering Complex Information 337

Scratch techniques

To create a list in Scratch, click on the button in
the Variables palette and give a name to the list. When the
list has been created, a reporter for the list appears in the
palette. A monitor can be shown on the stage by clicking
the small box next to the reporter. The monitor contains
the name of the list, the items in the list and the length of
the list. When the first list is created in a program, a set of
blocks will appear in the palette; these blocks are used for
computing with lists.

Items can be placed in the list by importing them from a
text file: click on the monitor for the list and select Import...,
which will bring up a window allowing you to choose a
file. Each row of the text file is a separate item to be placed
in the list and the items will appear in the list in the same
order that they appear in the text file.

338 Chapter 9

Chapter 10

Concurrent Run

Projects in Scratch are naturally concurrent. Already in
Chapter 2 we saw an animation that contained several
sprites whose scripts are run concurrently. In Chapter 3,
we saw a slightly different form of
concurrency—somewhat more difficult to understand at
first—where a single sprite had several scripts, all of which
are run concurrently. It is not surprising that concurrency
in Scratch is natural and useful: even in our day to day life,
the people and objects that surround us operate
concurrently. We ourselves do several things concurrently;
for example, we might eat or talk on the telephone at the
same time that we are watching TV. We are also very
familiar with concurrency in computers: You can start to
download a large video and concurrently continue to write
a document for your homework or chat with your friends.

339

340 Chapter 10

We have seen in Chapters 7–8 that when a project has
several scripts running concurrently, we have to carefully
consider the interaction between the scripts. These
interactions can cause the program to behave unexpectedly
in ways that are hard to predict when we write the
program. In this chapter we focus on the topic of
concurrency and demonstrate how interacting scripts
cause problems. We then show techniques for avoiding
these problems.

Example 1
Educated rabbits
Two rabbits will participate
in the project. The
task of the rabbits is to read
a number that is written
on a blackboard and
to write another number in
its place. Each rabbit has a
small blackboard of its own (called a slate) in addition to
the large blackboard (called the board) on the wall of the
room. A rabbit moves to the board, copies the number that
is written there to his slate, and returns to his place. There,
the rabbit adds one to the number written on its slate,
moves back to the board, and copies the number from his
slate to the board.

Concurrent Run 341

The graphics of the animation

To simplify this project, we have prepared the images that
you will need in the file costumes-rabbits, so that all you
have to do is provide the scripts. There will be three sprites
in the project: Rabbit1, Rabbit2, and Number for the
number that is written on the board. The board is not itself
a sprite but a part of the background.

Each of the sprites has several costumes. To see the
costumes, click on a sprite and select the Costumes tab in
the center window. Number has several costumes, one for
each value of the number that can be written on the board.
The first costume is for the value 0, the second for the
value 1, and the third for the value 2. Each of the rabbit
sprites also has several costumes that correspond to the
different values that can be written on the slate during the
animation. Here too, the three costumes correspond to the
values 0, 1, 2, in that order. The fourth costume for each
rabbit represents a blank slate upon which no number is
written.

Writing the numbers in order: first one,
then the other
We start with a project where the rabbits do not run
concurrently; rather the script for one rabbit runs to
completion before the script for the other rabbit starts.

342 Chapter 10

Task 1

Initially, each rabbit will be placed in its own
corner with a blank slate in its hand. The board
in the center of the room has 0 written upon it.
Rabbit1 moves to the board, copies the number
written there (initially 0) to its slate, returns to
its corner and increases the value of the number
on its slate by 1. Now it will move back to the
board and copy the number 1 that appears on
its slate to the board instead of the value 0 that
had been written there. Finally, it returns to its
corner and signals Rabbit2 that its turn has
come.

Rabbit2 will perform the same sequence of
actions: it will move to the board, copy the
number on the board (which is now 1) to its
slate, move back to its corner, increase the value
from 1 to 2, move back to the board, copy the
number 2 from its slate to the board in place of
the 1 that is written there, and move back to its
corner.

Program file name: sequential-rabbits

Let us develop the animation in stages, starting with the
behavior of Rabbit1.

0. when the green flag is pressed

Concurrent Run 343

1. go to the corner of the room
2. clean your slate
3. move to the board at the center of the room
4. copy the number from the board to your slate
5. go back to your corner
6. increase the value on your slate by one
7. return to the board at the center of the room
8. copy the value from your slate to the board
9. return to your corner
10. notify Rabbit2 that its turn has arrived

This description is similar to descriptions that we have
given before, but it is more general because we have not
given details of the positions and motions. There are five
steps which require motion: Step 1 where the rabbit is
initially placed in its corner, and Steps 3, 5, 7, 9, where the
rabbit moves to the center of the room and back, and again
moves to the center of the room and back. It is very simple
to translate these statements into instructions in Scratch.
Step 10 is also easy, because it simply requires
broadcasting a message to Rabbit2.

Modifying the slates and the board

Steps 2, 4, 6, 8 are more difficult to translate into
instructions in Scratch. They all relate to the board on the
wall and the slates held by the rabbits. The actions include
changing the value written on a board or slate and copying

344 Chapter 10

values from the board to a slate and back. How can we
represent different values on the board and the slates? The
representation has to consider two aspects:

• First, we have to save, remember and read the value
written on a board or slate, so that we can, for
example, increase the value by 1. We will use
variables to remember the number that is written on
a board or a slate. It is easy to change the values of
the variables to reflect what we intend to display.

• Second, we have to display these values. We
prepared several costumes for each sprite that
differed only in the numbers that appeared in the
images. Therefore, changing the numbers can be
done by changing costumes.

We expand the description of Rabbit1’s behavior as
follows, using the variables blackboard to remember the
value display on the board and my slate to remember to
value displayed on this rabbit’s slate. The message your

turn is broadcast to Rabbit2 when the script is finished.

0. when the green flag is pressed
1. go to the corner of the room
2. initialize the value of the variable my slate to 0
3. initialize your costume to the costume with the blank slate
4. move to the board at the center of the room
5. copy the value of the variable blackboard to the variable my slate

Concurrent Run 345

6. change your costume to display the value of the variable my slate

(the costume number is my slate + 1)
7. go back to your corner
8. increase the value of the variable my slate by 1
9. change your costume to display the value of the variable my slate

(the costume number is my slate + 1)
10. return to the board at the center of the room
11. copy the value of the variable my slate to the variable blackboard
12. return to your corner
13. broadcast the message your turn

Exercise 1

In step 11, we changed the value of the variable
blackboard but we didn’t change its costume.
Why?

Exercise 2

Translate the description into a script in Scratch.
The initial position of Rabbit1 will be in the
lower left corner of the stage (−180, −130) and
it will move to the center of the room at (−60,
0).

Guidance: You can use glide instruction for
the rabbit’s motion. You may want to use wait

instructions between the glide instructions

346 Chapter 10

and the instructions that change costumes to
slow down the animation so that it will be easy
to observe.

The variable blackboard will be used by all
sprites, while the variable my slate will be
used only by the Rabbit1 sprite. When creating
the variables, check For all sprites or For
this sprite only as appropriate. You should
also remove the monitors for all variables by
removing the check mark next to the variable’s
reporter. The reason is that we are representing
the values using costumes so we can hide the
values of the variables themselves.

The behavior of the second rabbit

How does the second rabbit behave? Its behavior is very
similar to that of the first rabbit except that Rabbit2 should
begin to run its script only when it receives the message
your turn. When it finishes running its script, it does not
broadcast a message, because there are no more sprites in
this project. Therefore, when the green flag is clicked,
Rabbit2 will only perform its initialization; the rest of its
behavior is specified in a second script which will run
when it receives the message your turn:

0. when the green flag is pressed
1. go to the corner of the room

Concurrent Run 347

2. initialize the value of the variable my slate to 0
3. initialize your costume to the costume with the blank slate

0. when you receive the message your turn
(as for Rabbit1 without 13. broadcast the message your turn)

Private (local) variables

The scripts for Rabbit2 also use two variables: blackboard
and my slate. While blackboard is the same variable used
in the script for Rabbit1, the variable my slate is a new
variable used only by the scripts for Rabbit2. It doesn’t
matter that there are two variables named my slate;
hopefully, when you created the variables, you told Scratch
For this sprite only. Therefore, when the variable name my

slate appears in the script for Rabbit1, Scratch knows that
it is referring to the variable that belongs to the sprite
Rabbit1 and, similiarly, the use of the variable name my

slate in a script for Rabbit2 can only refer to the variable
that belongs to Rabbit2. Think of two girls who have the
same first name Rachel. No confusion will result if they
belong to different families and never leave their houses
because in each house there is only one girl named Rachel.

348 Chapter 10

New concept: private (local) variables
A variable can be created so that it is accessi-
ble (for reading its value or changing its value)
to only one sprite. The variable is said to be
private or local to the sprite. Since the vari-
able is accessible to only one variable, private
variables in different sprites can have the same
name and there is no ambiguity.

New construct in Scratch: creating a local vari-
able

Select For this sprite only to obtain a local vari-
able.
A monitor for a local variable displays the name
of the sprite that the variable belongs to so that
you can distinguish between local variables of
the same name.

The name of the sprite in a monitor functions like a family
name to distinguish two variables with the same name.
Just as Rachel Jones is not the same person as Rachel
Smith, Rabbit1 my slate is not the same variable as
Rabbit2 my slate.

Exercise 3

Concurrent Run 349

Translate the description into Scratch. The
initial position of Rabbit2 will be in the lower
right corner of the stage (180, −130) and it will
move to the center of the room at (60, 0).

The Number sprite

The Number sprite represents the number displayed on the
board. It must ensure that a change in the value of the
variable blackboard causes a change in the costume of the
sprite. The value of the variable blackboard is changed by
the rabbit sprites, but in Scratch a sprite cannot change the
costume of another sprite, so the number must be a
separate sprite that can change its own costume.

How does the Number sprite know what its costume should
be? This is very easy: the costume is the one whose
number is one more than the value of blackboard: the
costume that displays 0 is the 1st costume, the one that
displays 1 is the 2nd costume, and the one that displays 2
is the 3rd costume. In general, the costume to be displayed
is the value of blackboard + 1.

? When should the number sprite change its costume?

It should make the change when a rabbit sprite has
changed the value of the variable blackboard.

? How can the number sprite know when that happens?

One way would be to use messages and to have the rabbit
sprites broadcast messages to the number sprite, which

350 Chapter 10

would change its costume when it receives the messages.
Another way is to use mailboxes (variables) to
communicate between sprites. Fortunately, we already
have the variable blackboard that is shared by all sprites.
The number sprite merely has to check repeatedly if this
variable has changed and change the costume accordingly.
In fact, it need not use a condition to check the value; it can
just change the costume according to the current value of
the variable.

0. when the green flag is clicked
1. initialize the variable blackboard to 0
2. initialize your costume to costume 1
3. repeated indefinitely
3.1 set your costume to the costume whose value is blackboard + 1

Exercise 4

Translate this description into Scratch. Run the
project and check that is does what is required.
Write comments on the project and save it.

Example 2
All together now
The rabbits will now run their scripts concurrently.

Task 2

Concurrent Run 351

Modify the project so that the two rabbits move
concurrently.

Program file name: concurrent-rabbits

The project for Task 2 is in many ways simpler than the
project for Task 1. Since the scripts for both rabbits run
concurrently, there is no need for a message to synchronize
them, and Rabbit2 can start its run immediately when the
green flag is checked. Remove the broadcast instruction
from the script of Rabbit1, and the corresponding receive

instruction from Rabbit2 so that it runs all of its
instructions after the green flag is clicked. The behaviors
for both rabbits are the same, except for the positions in the
motion steps.

Exercise 5

Make these changes in the scripts so that the
rabbits will run concurrently. Write comments
and save the project. Run the project and see
what value is written on the board at the end.

The result of running this animation is that 1 is written on
the board at the end of the run. The rabbits move together,
arrive at the board at the same time and copy the value of 0
to their slates. Both add 1 to this value, and both arrive
again at the board at the same time and copy the value 1 to
the board.

352 Chapter 10

We hope that you are amazed at the result. Previously, two
rabbits added 1 to the value 0 and the result was 2, as
expected. Here, the result of adding 1 to 0 twice is 1!! This
happens even though the computation of each individual
rabbit is unchanged. The unexpected behavior occurred
only because the scripts of the sprites run concurrently.

Example 3
All together now, but at different
speeds
Real rabbits don’t all move at the same speed! Let us see
what happens when the two rabbits move at different
speeds.

Task 3

Modify the project so that the rabbits move at
different speeds. We will arbitrarily decide that
Rabbit2 is much slower than Rabbit1. Rabbit1
moves at the same speed as before, but Rabbit2
takes five times as long as before to reach the
board and five times as long to return to its
corner.

Program file name: different-speeds

Exercise 6

Concurrent Run 353

Make these changes in the scripts and run the
project.

In this version, even though the rabbits run concurrently,
the value written on the board at the end of the run is now
2, the same as it was when the rabbits ran sequentially, one
after the other. This happens because Rabbit1 manages to
run through his entire script before Rabbit2 reaches the
board for the first time. Rabbit1 copies the 0, increases the
value to 1 and copies 1 onto the board. Only then does
Rabbit2 arrive at the board, copy the 1, increase it and
copy the 2 onto the board. The effect is the same as if
Rabbit2 had waited for a message from Rabbit1.

All together now at different speeds, but
with a surprise

We do not expect one rabbit to always be faster than the
other. Rabbit1 might start out moving faster, but tire and
then move slowly. Let us see what happens when the
speeds of the rabbits change randomly. Rabbit1 will
always run faster than Rabbit2, but sometimes very much
faster and sometimes only a little faster.

Task 4

Modify the project so that the rabbits run at
different, randomly chosen, speeds. Specify the

354 Chapter 10

ranges of the random speeds so that Rabbit1 is
always faster than Rabbit2.

Program file name: random-speed

In the initialization of the scripts, each rabbit will
randomly choose the time that it takes to move from its
corner to the blackboard. To ensure that there still a
significant difference in these times, we decide that
Rabbit1 will choose to move this distance in 1, 2 or 3
seconds, while Rabbit2 will chose 6, 7 or 8 seconds.

Each rabbit will save the random value in a new variable
and then use the value of the variable in the first window
of the glide instructions. We can use the same name
speed for the variables of the two sprites if they are private
variables. Select For this sprite only when you create the
variables.

Exercise 7

Make these changes in the scripts so that the
rabbits run at different speeds that are chosen
randomly. Run the project several times and see
what value is written on the board at the end of
the run.

Although the rabbits run concurrently, the value on the
board at the end of the run can be different each time that
we run the project! We cannot know in advance what the

Concurrent Run 355

result will be because of the randomness. For example, if
Rabbit1 chooses 1 while Rabbit2 chooses 6, Rabbit2 will
be very slow relative to Rabbit1 and the final result will be
2, just like in the previous project. However, if the
difference is small (Rabbit1 chooses 3 while Rabbit2

chooses 6), Rabbit1 will not be able to return to the board
and write 1 there before Rabbit2 copies the original value
of 0. The result will be that first Rabbit1 writes 1 on the
board and then Rabbit2 also writes 1 on the board.

It is important to understand that the different
results are obtained merely by changing the
rate at which the scripts run. There is no
randomness in the computation of each rabbit.

Different interleavings in concurrent
runs

We have seen that when scripts are run concurrently, the
relative speeds of the sprites can influence the result
because the instructions are interleaved in different orders.
This is shown in the following tables which have a column
for each sprite and where the instructions are run in order
from top to bottom:

356 Chapter 10

Rabbit1 runs an instruc-
tion

Rabbit2 runs an instruc-
tion

Go to board and copy
value to slate
Return to corner and add 1
to value
Go to board and copy
value to board

Go to board and copy
value to slate
Return to corner and add 1
to value
Go to board and copy
value to board

However, when Rabbit1 is roughly at the same speed as
Rabbit2, the following sequence can be obtained that
causes the value 1 to be written on the board:

Concurrent Run 357

Rabbit1 runs an instruc-
tion

Rabbit2 runs an instruc-
tion

Go to board and copy
value to slate

Go to board and copy
value to slate

Return to corner and add 1
to value

Return to corner and add 1
to value

Go to board and copy
value to board

Go to board and copy
value to board

Here is another possibility that leads to a final result of 1:

358 Chapter 10

Rabbit1 runs an instruc-
tion

Rabbit2 runs an instruc-
tion

Go to board and copy
value to slate
Return to corner and add 1
to value

Go to board and copy
value to slate

Go to board and copy
value to board

Return to corner and add 1
to value
Go to board and copy
value to board

Each individual rabbit runs its instructions in the same
order, but the overall order of the instructions that are run
depends on the particular interleaving of the instructions
from the two rabbits, and the final result can depend on
the interleaving.

Concurrent Run 359

New concept: interleaving
When several scripts are run concurrently, the
instructions from each script are interleaved to
obtain the sequence in which the instructions
are run. We are assured that each script is
run sequentially, but there are many ways to
interleave the instructions of different scripts,
and the different interleavings may not give the
same results.

Exploring concurrency in previous
projects

We created rabbit project to demonstrate that concurrent
run can result in different results. The project is rather
artificial, but the same phenomenon can occur whenever
more than one script is run concurrently. In a project with
multiple scripts, we must consider all the possible
interleavings and ensure they all lead to a correct result.

Consider, for example, the Pac-Man game in Chapter 7.
From the beginning, the Pac-Man sprite had two scripts
that ran concurrently, one that was responsible for
animating the opening and closing of the mouth by
changing costumes and a second that was responsible for
the motion of the sprite within the maze. Both scripts
started with the same initialization instructions: placing

360 Chapter 10

the sprite in the top left corner, facing right. It would seem
that one sequence of initialization instructions would be
sufficient, so why did we “unnecessarily” duplicate these
instructions?

Let use consider the version of the game in file
pacman-moves-and-hits-the-wall, where the Pac-Man sprite
identifies hitting the wall of the maze. The sprite moves as
long as it doesn’t hit the wall, but when it does hit the wall,
it says “Ouch!” Suppose that we include the initialization
instructions only in the script that changes the costumes,
while the script that is responsible for the movement does
not contain initialization instructions.

Concurrent Run 361

Run the animation by clicking on the green flag. The
Pac-Man sprite moves until it hits the wall, at which point
it stops, says “Ouch!” repeatedly, and opens and closes its
mouth repeatedly. Click again on the green flag. Since the
scripts run concurrently, the following interleaving of
instructions is possible:

Immediately after the green flag is clicked (and
before the script that changes costumes starts
running), the script for moving the sprite starts
to run. Since the initial position of the Pac-Man
sprite has not been changed, it is still touching
the wall, so it will say “Ouch!”. When the script
for the costumes starts running, it will initialize
the position of the Pac-Man sprite. The sprite
will now move correctly but it will still be
saying “Ouch!” because the say instruction
without a time limit causes its string to appear
indefinitely. It is only erased when the green
flag is clicked again.

Let us show what happens in more detail. Ignoring the
wait instruction, the instructions run by costume script are:

362 Chapter 10

Costume script runs an
instruction
Initialize
Change costume
Change costume
(... repeated indefinitely
...)

The instructions run by the movement script are:

Movement script runs an
instruction
if touching wall
say “Ouch!”
otherwise move 2 steps
if touching wall
say “Ouch!”
otherwise move 2 steps
(... repeated indefinitely
...)

We expect the interleaved run of the instructions to be
similar to the one shown in the following table, where the
initialization instructions are run first:

Concurrent Run 363

Costume script runs an
instruction

Movement script runs an
instruction

Initialize
if touching wall
say “Ouch!”
otherwise move 2 steps

Change costume
Change costume

if touching wall
say “Ouch!”
otherwise move 2 steps

Change costume
Change costume

(... repeated indefinitely ...)

But, since the order of interleaving is not known, it could
equally well be as follows:

364 Chapter 10

Costume script runs an
instruction

Movement script runs an
instruction
if touching wall
say “Ouch!”
otherwise move 2 steps

Initialize
Change costume
Change costume

if touching wall
say “Ouch!”
otherwise move 2 steps

Change costume
Change costume

(... repeated indefinitely ...)

This interleaving, when it happens after the Pac-Man has
hit the wall, will cause it to say “Ouch!” while it is moving
through the maze. To avoid such problems we introduced
the initialization into both scripts.

Important note

The manner in which Scratch interleaves scripts is not
explained in its documentation. There is no point is trying
to understand exactly how Scratch works, because it is
possible that the method will change in a future version.

If you are chatting on your computer or playing a game,
you expect that the computer will work correctly whether

Concurrent Run 365

or not you are downloading a video at the same time. The
computer might run slower because of the extra work
needed to download the video, but everything still works
correctly.

New concept: correctness of concurrent pro-
grams
A concurrent program is correct if it gives cor-
rect results no matter how the instructions are
interleaved.

Introducing order

The previous example showed that we have to ensure that
unwanted interleavings of instructions do not occur. Let us
modify the example with the rabbits to ensure that no
interleaving results in an incorrect answer. Since the two
rabbits each add 1 to the number on the board that is
initialized to 0, the correct answer is 2.

Since the rabbits’ movements are random, different
answers can be obtained. Real rabbits cannot be forced to
run at the same speed, so a program with randomness is a
good simulation of the real world. Instead, we need to
prevent the situation where one rabbit copies the value on
the board to its slate while the other rabbit is in the middle
of the process of adding 1 and copying the new value back
to the board.

366 Chapter 10

Task 5

Modify the animation so that one rabbit always
updates the value on the board before the other
rabbit reads the value, regardless of the speeds
at which the rabbits move.

Program file name: key-for-synchronization

? How can we do this?

We will require each rabbit to obtain permission to update
the board. Permission will only be given to one rabbit at a
time and the rabbit that doesn’t have permission will not
be allowed to go to the board in order to copy a number.

Suppose that above the board is a light that can be either
red (meaning that the board is in use) or green (meaning
that the board is free). A rabbit can go to the board only if
the light is green. When the rabbit starts to move towards
the board, the light must turn to red to prevent the other
rabbit from going to the board. Only when the first rabbit
has finished copying a new value to the board will the
light become green again, allowing the second rabbit to
proceed. The light prevents the unwanted behavior caused
by concurrently running certain instructions from two
scripts. Here is a description of the behavior of a rabbit:

0. when the green flag is pressed
1. go to the corner of the room

Concurrent Run 367

2. initialize the value of the variable my slate to 0
3. initialize your costume to the costume with the blank slate
4. request permission to go to the board and wait until you receive it
5. move to the board at the center of the room
6. copy the value of the variable blackboard to the variable my slate

7. change your costume to display the value of the variable my slate

8. go back to your corner
9. increase the value of the variable my slate by 1
10. change your costume to display the value of the variable my slate

11. return to the board at the center of the room
12. copy the value of the variable my slate to the variable blackboard
13. return to your corner
14. notify that the permission is not needed anymore

Implementing the permission with a key

The problem with using the red and green light for
permission is that we can’t see which rabbit has received
the permission, because the color red only means that one
of the rabbits has received the permission.

We will use a different method:
a rabbit needs to have a key in order to go to
the board. (The concept of a physical object
representing permission is often used when a group is
discussing something: there is one stick and only the
person holding the stick is allowed to talk.) A Key sprite
will be placed between the two rabbits. Initially it points
upwards, signifying that the key has not been taken by

368 Chapter 10

either rabbit. When a rabbit takes the key, the image of the
Key sprite is rotated to point to that rabbit.

The following two scripts describe the behavior of the Key

sprite when it receives messages from Rabbit1:

0. when Rabbit1 requests permission
1. wait until the board is free
2. remember that the board is in use
3. turn towards Rabbit1

0. when Rabbit1 has finished its task
1. turn upwards
2. remember that the board is not in use

The behavior when receiving messages from Rabbit2 is
similar.

Messages for carrying out the synchronization

The Rabbit1 sprite communicates with the Key sprite by
broadcasting messages (one for requesting and one for
releasing). Similarly, Rabbit2 uses two messages for
communicating with the Key sprite. The Key sprite defines
a variable busy to remember if the board is in use or not. 0
will indicate that the board is free and 1 that it is in use.
The description of the behavior of Rabbit1 is now:

0. when the green flag is pressed

Concurrent Run 369

1. go to the corner of the room
2. initialize the value of the variable my slate to 0
3. initialize your costume to the costume with the blank slate
4. broadcast message Rabbit1 asks permission and wait

5. move to the board at the center of the room
6. copy the value of the variable blackboard to the variable my slate

7. change your costume to display the value of the variable my slate

8. go back to your corner
9. increase the value of the variable my slate by 1
10. change your costume to display the value of the variable my slate

11. return to the board at the center of the room
12. copy the value of the variable my slate to the variable blackboard
13. return to your corner
14. broadcast message Rabbit1 no longer needs permission

The initial steps of the scripts of the Key sprite in terms of
messages are:

0. when the message Rabbit1 requests permission is received

0. when the message Rabbit1 no longer needs permission is received

Similar descriptions can be given for the behaviors of
Rabbit2 and the Key.

Possible interleavings

Consider a possible run of these scripts where Rabbit2 is
the first to run. It sends a request message to the Key sprite.

370 Chapter 10

Let us assume that busy is initially 0; then the script for
receiving the request message can run to its conclusion. It
will set busy to 1 and turn the image of the key towards
Rabbit2. When the script has finished, Rabbit2 can
continue running its script, going to the boards, copying
the number and so on.

Suppose now that while Rabbit2 is at the board, Rabbit1
starts running its script and sends a request message to the
Key. The Key will receive the message, but since busy is
equal to 1, it will not continue running the rest of its script.
Rabbit1 is waiting for this script to terminate, so it will not
run anymore instructions. Only when Rabbit2 finishes its
entire script (writing 1 on the board) will it send the no

longer needs permission message that will cause the Key

to reset busy to 0. Now, the script for receiving Rabbit1’s
request message can continue running. When it
terminates, Rabbit1 will be allowed to run its script,
eventually writing 2 of the board.

Exercise 8

Write a description of the initialization of the
Key sprite.

Exercise 9

Construct a project with all seven scripts
corresponding to the above descriptions. There

Concurrent Run 371

will be one script for each rabbit and five scripts
for the key (an initialization script and two
scripts for the messages from each rabbit). Use
wait instructions freely to make it easy to
observe the animation: after a key turns and
before a rabbit sends a request.

New concept: preventing unwanted interleav-
ing by forcing sequential run
If some interleavings of a program are un-
wanted, they can be prevented by ensuring
that parts of a script are run sequentially with
no possibility of another script running its in-
structions at the same time. This synchroniza-
tion can be implemented by using messages
or global variables that are accessible to both
scripts.

Exercise 10

Experiment with the use of random numbers
for the time that the rabbits move from the
corner to the blackboard and convince yourself
that the final number displayed on the board is
always 2, no matter what speeds are chosen.
Change the wait instructions in the
initialization of the rabbit scripts and convince

372 Chapter 10

yourself that the program is correct no matter
which rabbit moves first.

Program file name: key-with-random-initialization

Additional Exercises

Exercise 11

Construct a game for launching rockets at an
invading alien. You can start from the project
costumes-monster, which contains costumes for
the rocket (one of the rocket before launching
and one with hot exhaust coming out of its
nozzle), costumes for the monster and two
buttons.

a. Construct an animation of a rocket launch.
When the green flag is clicked, a rocket is
placed at the bottom of the stage pointing
upwards. Click a button labeled L to launch the
rocket. After the rocket is launched, its costume
changes. The rocket stops when it touches the
edge of the stage. The left and right arrows on
the keyboard change the direction of the rocket.

Program file name: launch-rocket

Concurrent Run 373

b. Add a second rocket that is also launched
when the L button is clicked. Except for its
initial position, the second rocket will use the
same script as the first one.

Program file name: launch-two-rockets

c. Unfortunately, in (b) the arrow keys give the
same control commands (left or right) to both
rockets. Modify the animation so that the two
arrow keys control only one of the rockets at a
time. Add an additional button labeled either 1
or 2:

Initially, the button will randomly display 1 or
2. The arrow keys control only the rocket whose
number is displayed on a button.

Guidance: Use a variable to control which
rocket responds to the command.

Program file name: button-controls-one-rocket

d. Now add the monster to the project. The
monster flies from right to left at the top of the

374 Chapter 10

stage. If one of the rockets hits the monster, the
monster explodes. When that happens, stop the
run of the program.

Guidance: The instruction causes all
scripts in all sprites to stop.

Program file name: rockets-with-monster

Exercise 12

The rockets need to refuel once they reach the
top of the stage. Start from the project
costumes-rockets, which contains two costumes
for the rocket, one of the rocket before
launching and one with hot exhaust.

a. When the green flag is clicked, the rocket is
launched, but only after a random period has
passed. At the top edge of the stage the rocket
refuels—the rocket sprite says “Refueling”.
Refueling takes a random period. When
refueling is completed, the rocket returns to its
initial position at the bottom of the stage and is
launched again after a random period. This
cycle of launch, refuel and return is run forever.
Unlike Exercise 12, the rocket is launched
automatically, not by the user.

Program file name: rocket1

Concurrent Run 375

b. Modify the appearance of the rocket so that
when it is in flight a plume of flame appears
shooting out of the rear nozzle. The flame will
not appear when the rocket is on the launch
pad or being refueled.

Program file name: rocket2

c. (Advanced) Modify the project so that four
rockets are launched and refueled. They will be
positioned at different points along the x-axis.
Unfortunately, the space agency only provides
two pumps for refueling the rockets. The third
and fourth rockets that reach the top of the
stage must wait (with their engines running) for
a pump to become available. Have the waiting
rockets say “Waiting to refuel” so we can see
their status.

Guidance: This is a synchronization problem
similar to the one with the rabbits who had to
share one blackboard. The situation here is
more complicated because two rockets can
refuel at the same time. Use a variable
Refueling that remembers the number of
rockets currently refueling. Use different color
effects to distinguish the rockets.

Program file name: rocket3

376 Chapter 10

d. (Advanced) The four rocket sprites start at
randomly chosen launch pads. When a rocket
returns from refueling, it can return to any free
pad, not necessarily the one it was launched
from.

Guidance: Create a list of unused x-positions
for the rockets. A rocket returning to the launch
pad takes as its x-position the first element of
the list. After launch, the rocket inserts its
x-position at a random position in the list
(select any in the second window of the block

).

Program file name: rocket4

e. (Advanced) In the animation in (d), two
rockets can crash into each other at the refueling
pump. Modify the project to prevent this.

Program file name: rocket5

Summary

Concepts

A program may be composed of more than one
component; these components run concurrently, that is,

Concurrent Run 377

their instructions are interleaved. We can be sure that the
instructions of a single component are run one after the
other, but we do not know how the instructions for
different components are interleaved. A concurrent
program is correct if and only if it’s behavior is correct for
every possible interleaving.

We must ensure that no interleaving of the instructions of
the components of a program gives incorrect results. This
is done by synchronizing the components: forcing some
part of a component to run sequentially without
interference from instructions in the other components.

Messages can be used for synchronization: a script with

will not start until a message is

received and a script with will not
continue until the receiving sprite finishes its script.

Synchronization can also be implemented using a global
variable, which is accessible to all sprites in a project. A
variable can be created as a private (or local) variable,
meaning that it is accessible only to one sprite. Since the
name of the sprite is effectively part of the name of the
variable, different sprites can have variables with the same
name.

378 Chapter 10

Chapter 11

Digging Further into
Computer Science and
Scratch (Optional)

During our journey to learn computer science and Scratch,
we have followed a consistent path: we set ourselves the
task of solving problems and then writing programs to
implement the solutions. As the tasks get more complex,
the implementation of programs needed additional
instructions in Scratch. However, we have not studied the
instructions in a systematic manner that would “cover” all
the available instructions.

Having come to the end of our journey, there remain a few
instructions that we have not explained. In this chapter, we
will explore more concepts of computer science and

379

380 Chapter 11

additional Scratch instructions (though not all of them); by
now, you should be enough of a Scratch expert to figure
out the meaning of any remaining instructions that aren’t
explained! In this chapter, we will not give the
development of the solutions; instead, we will pose tasks,
present the new concepts and the new Scratch instructions
that implement them, and leave it to you to develop the
solutions.

A list of all the blocks arranged by palettes and by order
within each palette can be found in the Scratch Reference
Guide, which can be downloaded from the webpage that
appears when Help entry is selected from the Help menu.

Example 1
Collision-avoidance radar
It is very sad when airplanes collide and crash, killing
hundreds of people. In recent years, the number of
collisions has been reduced, saving hundreds of lives, by
the installation of collision-avoidance radar in each airplane.
These radars scan the sky around the airplane and warn
the pilot if another airplane is coming close. The radar can
even suggest to the pilot in which direction to turn the
airplane to avoid the collision.

Task 1

Construct an animation of two airplanes
crashing into each other. One sprite is an

Digging Further into Computer Science and Scratch 381

airplane that takes off from the bottom left
corner of the stage and flies towards the upper
right corner. (Make sure that no part of airplane
touches the edge of the stage.) A second sprite
is another airplane that is flying from the upper
right of the stage in order to land near the lower
left of the stage (again, without touching the
edge). When the airplanes fly at the same time,
they get very close to each other, crash and fall
out of the sky.

Program file name: collision

Task 2

Modify the animation for Task 1 such that when
the airplanes get close, they both turn to their
right, thus avoiding the collision.

Program file name: collistion-avoidance

Sensing the position of a sprite

We have frequently used instructions that sense a collision.
In Chapter 2, we sensed collisions that occur if one sprite is
touching another, while in Chapter 7, the Pac-Man sprite
was considered to have touched the wall of the maze if it

382 Chapter 11

touched the color of the wall. The requirements of this
problem are somewhat different: we need to sense if the an
airplane is close to the edges of the stage and if it is close to
the other airplane.

Consider first the requirement that the airplanes do not
touch the edges of the stage. We know that the size of the
stage is fixed so we know the range of values of the x- and
y-positions: −240 to 240 for the x-position and −180 to 180
for the y-position. If the airplane sprites know their actual
position, they can stop moving when that position is too
close to the wall.

Let (sx, sy) be the positions of the center of an airplane
sprite and let its width be w and its height be h. Then “too
close” can be defined as:

sx +
1
2 × w < 240 sx − 1

2 × w > −240

sy +
1
2 × h < 180 sy − 1

2 × h > −180

as shown in the following diagram:

Digging Further into Computer Science and Scratch 383

(−240,−180) (240,−180)

(−240, 180) (240, 180)

t
(sx, sy)

h

w

-

6

t
(sx, sy)

h

w

�

?

x-axis� -

y
-
a
x
i
s

?

6

The operator enables a sprite to read
properties of itself or another sprite; it appears near the
bottom of the Sensing palette. Select a property in the first
window and select a sprite in the second window. The
properties x-position and y-position correspond to the
positions sx, sy of the center of the sprite and we have to
check that these positions don’t get too small or too large:

sx < 240− 1
2 × w sy > −240 + 1

2 × w

sy < 180− 1
2 × h sy > −180 + 1

2 × h

For simplicity, we won’t actually compute these values;
instead, we guess (and then experiment with) values for
the limits of x and y. The following instruction moves the

384 Chapter 11

airplane to the right until it is “close to” the right edge of
the stage:

New construct in Scratch: sensing a property
of a sprite

The operator enables a
sprite to read the value of the property cho-
sen in the first window of the sprite chosen
in the second window. The properties that
can be read are the x-position, y-position,
direction, costume#, size and volume of its
sound.
The Stage can be chosen in the second win-
dow. In that case, the properties that can be se-
lected are the background# and the volume of its
sound.

Computing the distance from another
sprite

Since the edges of the stage are at fixed positions, if we
know the x- and y-positions of a sprite then we can check if

Digging Further into Computer Science and Scratch 385

it has touched an edge. However, collision avoidance
requires that we know the distance between two sprites. This
is a relative measure since it doesn’t matter where the two
airplane sprites are, only that they not be close to each
other, say within 100 units of each other.

Given the x- and y-positions of both airplanes, we can
compute the distance using a mathematical formula;
however, this formula is not simple. Since animations
frequently need to know distances, Scratch supplies an
operator which can be found in the Sensing
palette. Collision avoidance is now very simple: each
airplane continues its movement until the distance to the
other sprite is small, at which point, each airplane makes a
turn to the right. For the sprite airplane1, an outline of the
script is:

386 Chapter 11

New construct in Scratch: distance to

The operator computes the dis-
tance to another sprite that is selected in the
window. The operator can also be used to
read the distance of the sprite from the mouse
pointer.

New concept: sensing as a way of transferring
information
We have frequently used variables and mes-
sages as a way of transferring information from
one sprite to another. Sensing can also be
looked upon as a way of transferring informa-
tion: one sprite can sense if it is touching an-
other sprite, touching a color that is part of the
image of another sprite; it can also sense the dis-
tance to another sprite.

The use of the operator enables us to work
with the concept of the distance between two sprites,
without worrying about how it is implemented. Another
example is the instruction glide , which is a complex
instruction that has to keep track of the position of the
sprite and the time that has passed. Like the distance to

operator, the glide instruction is easy to use without

Digging Further into Computer Science and Scratch 387

knowing how it is implemented. All software
development environments provide libraries of
computations, so that the programmer can easily use them
without worrying how they are implemented. The term
that is used is information hiding, because the
programmer can use a computation without knowing the
hidden details of its implementation.

Professional software development environments support
many ways of enabling the programmer to define her own
instructions and libraries that can be used without
knowing the details of their implementations. Scratch does
not have these features, although you can do something
similar by sending and receiving messages. A script that
sends a message causes a script to be run when the
message is received. Your friend could write that script
and you could send it a message without knowing the
details of the “hidden” script that your friend wrote.

New concept: information hiding
A computation can be implemented so that a
programmer can use the computation without
knowing the details of the implementation that
are hidden from the programmer.

Example 2
Guiding a missile is like a dog chasing
a cat . . .

388 Chapter 11

A missile aimed at an airplane has to change its direction
all the time so that it can hit the moving airplane. The
simplest way to do this is called “chasing like a dog,”
because that is the way a dog runs after something like our
poor Scratch cat. In this method, the dog always runs in
the current direction of the cat.

Task 3

Construct
a project
with a cat
sprite which
runs across the
stage from the
top left to the
top right and a
dog sprite which runs after the cat, always
running towards the current position of the cat.
Count the number of steps that the dog runs
until it reaches the cat and draw the track of the
dog. When the dog reaches the cat, display the
number of steps it has taken.

Program file name: stupid dog

There are three problems that we need to solve:

Digging Further into Computer Science and Scratch 389

• The dog sprite must point in the direction of the cat
sprite;

• The path of the dog must be drawn on the stage;

• The number of steps taken by the dog sprite must be
displayed only when the dog reaches the cat.

We will solve these problems one at a time.

Pointing one sprite to another

Once a sprite knows the x- and y-positions of another
sprite, it is possible to compute the direction of the second
sprite relative to the first one. However, this is an
advanced computation that uses trigonometry, so Scratch
supports this computation with an instruction.

New construct in Scratch: point towards

The instruction from the

Motion palette causes the sprite running the in-
struction to change its direction until it points
towards the sprite (or the mouse pointer) that
is selected in the window.

Like the distance to instruction, there are many
advantages to using the point towards instruction. We

390 Chapter 11

don’t have to invest the effort to write the mathematical
computation and to check that it is correct. The use of a
single instruction also makes it easier to write and
understand the scripts that use it.

Exercise 1

The operator enables the dog
sprite to obtain the direction from it to the cat
sprite. Can we use this operator in order to
point it in the direction of the cat instead of

? Explain.

Drawing on the stage

The task requires that the path of the dog sprite be traced
on the stage. Scratch supports the concept of a pen being
attached to (the center of) each sprite. As the sprite moves,
the pen draws a line on the stage. The pen can be in two
positions: down, in which case the line the drawn, and up,
in which cause the sprite can continue to move but nothing
is drawn.

Digging Further into Computer Science and Scratch 391

New construct in Scratch: pen down and pen
up

The instruction in the dark green Pen
palette causes the pen associated with the sprite
to be put down so that it touches the stage.
The movement of the sprite causes a trace to be
drawn. The instruction causes the pen
associated with the sprite to be lifted off the
stage, so that movement of the sprite does not
leave a trace. The Pen palette contains blocks
for changing the appearance of the trace.

Sprites that draw with a pen are a central
concept of the LOGO programming
environment that you may have heard of.

Hiding and showing the monitor for a variable

The task requires that the value of the variable that counts
the number of steps be displayed only when the dog
catches the cat. If the task had allowed the variable to be
continuously displayed, we could have simply checked the
box in the reporter for the variable and the monitor would
be displayed. There are instructions in the Variables palette
that enable a script to control whether a monitor is
displayed or not.

392 Chapter 11

New construct in Scratch: hiding and display-
ing a variable

The instruction causes the
monitor for the variable selected in the window
to be displayed on the stage.
The instruction causes the
monitor for the variable selected in the window
to be hidden.

Task 4

A smart dog does not run directly to the current
position of the cat, but to a point slightly ahead
of it, predicting where the cat will be. Modify the
animation so that after the dog sprite points to
the cat sprite, it makes an additional small turn
to the right. Experiment with values of this turn
and see if the smart dog can catch the cat in
fewer steps than the stupid dog.

Program file name: smart-dog

Example 3
Choreography—the depth dimension
on the stage

Digging Further into Computer Science and Scratch 393

Choreographers are people who design dances. They have
special notations that they use to write down the steps that
the dancers are to take. Let us construct a Scratch project
that will allow us to design a dance, as shown in the
following picture.

394 Chapter 11

Task 5

Let us start by constructing an animation for
the single dancer Cassy. After the green flag is
clicked, the user will move the mouse to a
position on the stage and click the mouse
button. When this has been done 5 times, the
dancer Cassy will move from one point to
another, tracing out the path of the dance.

Program file name: choreography1

Sensing the mouse cursor and clicks on
the mouse button

Previously, we have used several forms of interaction
between the user of Scratch and the animations that are
being run, for example, waiting for keys to be pressed or
answering questions being asked. Modern computer
systems prefer to use position-oriented interaction, where
the user clicks on a mouse or touches the display screen.

? How can we obtain the position where the mouse is
clicked?

Digging Further into Computer Science and Scratch 395

New concept: sensing the position and status
of the mouse
The computer always knows the current po-
sition of the mouse, which is defined by the
x- and y-positions of the tip of arrow that
is the mouse cursor. The computer can also
sense when one of the mouse buttons has been
pressed or released. Clicking with a mouse but-
ton is really two separate events: pressing it and
releasing it.

There are operators for sensing the position of the mouse
cursor and button actions:

New construct in Scratch: sensing the position
of the mouse

The operators , in the Sensing
palette read the current x- and y-positions of
the tip of the mouse cursor.

New construct in Scratch: sensing the mouse
button

The condition is true when the
(left) button of the mouse is pressed and is false
when the button is not pressed.

396 Chapter 11

Now that we know how to obtain the mouse positions, we
can write a description of the behavior of the Cassy sprite
that stores them in lists, one list for the x-positions and one
list for the y-positions:

0. when the green flag is clicked
1. initialize
2. repeat 5 times

2.1 wait until the mouse is pressed
2.2 store the x- and y-positions of the mouse in lists

3. repeat 5 times
3.1 glide to the next point

This description is straightforward to implement but there
is a technical problem. Steps 2.1 and 2.2 will be run 5 times,
as specified in step 2. In fact, they will be run so fast that
you won’t have time to move the mouse to a new position
of the stage. The result is that all five items in each list will
be the same. To solve this, after reading the mouse position
wait until the mouse button is released before proceeding:

2.3 wait until the mouse is not pressed

Exercise 2

Write a detailed description of the initialization
and the actions on the lists. Implement the
project in Scratch.

Digging Further into Computer Science and Scratch 397

In front of or behind?

Let us return to the project with the second dancer Jay and
make the dance more realistic so that sometimes Cassy
passes in front of Jay and sometimes Jay passes in front of
Cassy.

Task 6

Take one of the projects with two dancers and
modify it so that when Cassy is going right and
Jay is going left, Cassy passes in front of Jay,
while when they move in the other direction,
Jay passes in front of Cassy.

Program file name: choreography2

Scratch uses two-dimensional graphics so that the images
of the sprites do not have true depth. However, a simple
concept of depth is supported by Scratch. The sprites don’t
just move on the stage; instead, they move in many layers.
You can think of each layer as a sheet of clear plastic, such
that each sprite is drawn on one layer. Whenever sprites
on different layers overlap, the sprite on a layer that is
closer to the user (in front) hides whatever part of the other
sprites it covers. By moving individual layers closer to or
farther away from the front, the script can control how the
sprites are displayed when they cross.

398 Chapter 11

New concept: layers add depth to two-
dimensional graphics
Sprites are drawn on separate layers. When
sprites do not overlap, all of them are dis-
played. When they do overlap, they are dis-
played such that sprites on layers closer to the
front hide the parts of the sprites that they cover
on the layers behind them.

Cassy will move her layer to the front when she dances
from right to left, while she moves her layer behind Jay’s
layer when she dances from left to right. This is done using
the following Scratch instructions from the purple Looks
palette.

New construct in Scratch: moving sprites be-
tween layers

The instruction moves the layer
where the sprite is shown in front of the other
layers. This sprite will be completely visible.
The instruction moves the layer
where the sprite is shown back the number of
layers given in the window. If the layers in front
of it contain sprites whose images overlap this
sprite, the covered parts of the sprite are hid-
den.

Digging Further into Computer Science and Scratch 399

Task 7

Start from the animation for Task 5 and add the
second dancer Jay. After the green flag is
clicked, the user clicks the mouse ten times. The
first five clicks specify Cassy’s steps, while the
second five clicks specify Jay’s clicks. Then,
both dancers move concurrently. When they
pass each other, Jay acts like a gentleman and
lets Cassy pass in front of him.

Program file name: choreography3

We will need four lists: the x- and y-positions for Cassy
and the x- and y-positions for Jay. The positions of the
mouse clicks must be stored in the proper order, so to
prevent problems with the synchronization between Cassy
and Jay, we transfer the responsibility for sensing the
mouse clicks and storing their positions to the script for
the stage. When all ten positions have been stored, the
script for the stage notifies both dancers to start dancing at
the same time.

Exercise 3

Modify the animation to make the dance more
interesting: Jay dances in front of Cassy on
odd-numbered steps, while Cassy dances in
front of Jay on even-numbered steps.

400 Chapter 11

Guidance: Use the operator to decide
if a step is odd or even. Divide the step number
by two; if its remainder is 0, the number is even,
while if the remainder is 1, the number is odd.

Program file name: choreography4

Exercise 4

Modify the animation of the previous exercise
so that the dance is traced out. When the mouse
is clicked, a small square is displayed at each
point. The trace goes from one point to the next.
Use different colors for Cassy and Jay.

Guidance: Add two sprites, a small pink sprite
for Cassy and a small blue one for Jay. Use
separate scripts for processing the mouse clicks,

Digging Further into Computer Science and Scratch 401

one for Cassy and one for Jay. Whenever a
mouse is clicked, use the stamp instruction to
place a mark on the stage. The traces are done
using the instructions in the Pen palette.

Program file name: choreography5

Summary

Concepts

Information hiding: A computation can be implemented
so that a programmer can use the computation without
knowing the details of the implementation that are hidden.

One sprite can sense a property of another such as the
distance to it and its color. This is another way of
transferring information between sprites. A program can
sense properties of the mouse: its current position as well
as whether a button has been pressed or released.

Sprites are drawn on separate layers. When sprites do not
overlap, all of them are displayed. When they do overlap,
they are displayed such that sprites on layers closer to the
front hide the parts of the sprites that they cover on the
layers behind them.

402 Chapter 11

Scratch instructions

The operator enables properties of one
sprite to be read by other sprites.

The operator gives the distance from one
sprite to another (or the mouse cursor).

The instruction causes a sprite to

point in the direction of another sprite (or the mouse
cursor).

The instructions and cause the pen
associated with the sprite to touch the stage or stop
touching the stage, respectively. There are other
instructions for setting properties of the pen.

The operators and give the current x- and
y-positions of the tip of the mouse cursor.

The condition is true when the (left) mouse
button is pressed and false when the button is released. To
perform an action when a button is cliced, wait for

to be true and then wait for it to be false.

The instruction moves the sprite’s layer to the
front where it is visible.

The instruction moves the sprite’s layer
back by a number of layers. A sprite will be hidden if
sprites in layers closer to the front cover it.

The instruction causes the monitor for
the variable selected in the window to be displayed on the

Digging Further into Computer Science and Scratch 403

stage.

The instruction causes the monitor for
the variable selected in the window to be hidden.

404 Chapter 11

Looking Back

The purpose of this book was to acquaint you with
concepts of computer science. You may be asking yourself:
Do computer scientists really do the sort of things that you
have learned? To a great extent, they do. While Scratch
itself is not used by computer scientists, the principles and
concepts that you have learned are routinely used by
professionals. Computer science deals with problem
solving. The problems can be from many different areas
and can have various levels of difficulty. However, the
process of solving problems and the methods used are
very similar to what you did. Although professional
programming is usual done using textual languages not
graphical languages, the constructs in professional
programming languages are very similar to those in
Scratch.

405

406 Looking Back

Solution by stages

Tasks are divided into several parts that are solved one by
one. This ensures that each part is as simple as possible
and thus easier to solve. There are several methods of
software development that guide the division of a problem
into tasks and the order in which they are solved, but the
parts need not be solved in any particular order. The
person solving the problem may choose to skip over the
earlier parts, solve a later part and then return to the
earlier ones.

Refining a solution

Solutions to a problem should be written in a general form
and then gradually refined by adding more detail. This
ensures that we have a good solution without deciding too
early on the details. For example, the first step in a project
could be just initialize; later, we would refine this by listing
what variables and properties need to be initialized;
finally, we would give the values that are given to each
variable and property.

Looking Back 407

Verbal description

Solving a problem starts by expressing the solution in a
natural language like English and only later is the solution
translated into a precise form in a programming language
that the computer can “understand” and run. (Sometimes,
mathematical or graphical languages are used to express
the solution to a problem.) In many cases, especially for
very complex problems, the design of the solution and a
description of its behavior (called an algorithm) is the
really difficult aspect of problem solving. Translating the
design and description into a programming language is
sometimes the simpler part of the task. Some computer
scientists specialize in designing algorithms for complex
problems even though they may not be the ones who
implement the algorithms in computer programs.

Using known patterns

It is often the case that the person solving a problem finds
that some parts of the problem have already been solved
before, either by herself or by someone else. For example,
if the problem involves searching in a list, the patterns for
solving this problem are well known and can be used,
perhaps with some adaptation. Similarly, counting and
accumulating occur frequently and there are patterns for
using variables to do this task. Using known patterns can

408 Looking Back

significantly simplify problem solving. These patterns are
found in computer science textbooks and in software
libraries.

Hiding information

When you solve a problem, you make many decisions.
These decisions may involve important aspects of the
computation of the solution, but the user of the program
need not know them. It is preferable to hide these
decisions. An example would be the existence of some of
the variables that are used in the solution. Information can
also be hidden in the sense that one part of the program
does not know how other parts are implemented. We saw
an example of this when we used variables that were
visible only to one script and not another. The advantage
of information hiding is that parts of the solution are
independent from one another, so that it is easy to change
or improve one part without it affecting another one.

Fixing errors

Errors always occur when writing programs to solve
problems. It is important that a computer scientist develop
the skills needed to find and fix errors.

Looking Back 409

Documentation

Hopefully, when a computer scientist solves a problem, the
solution is useful over a long period of time. A program
frequently needs modification and improvement, and
errors must be corrected even if appear only after the
program has been used by many people. That is why it is
so important to document your programs with comments
so that they will be easy to change. You may not be the
person making the changes, so you must explain your
design in ways that others can understand. Even if you are
the one making the changes, you may not remember all the
details of your design that you did several months or years
ago.

Concepts

Here is a list of important concepts (some of them quite
advanced) that you have learned:

• Sequential and concurrent run

• Repeated run (bound and infinite, conditional or
fixed)

• Conditional run

• Communications and cooperation by sending
messages

410 Looking Back

• Variables

• Compound variables (lists)

• Random choice

If you have understood these concepts and if you have
been able to use them when solving problems in Scratch,
then you are familiar with many central ideas of computer
science and you are well prepared to continue your studies
in computer science.

