
Understanding Concurrency: the Process and the Product

Thesis for the degree Doctor of Philosophy

By YIFAT BEN-DAVID KOLIKANT

February,2003

Submitted to the Science Council of the

Weizmann Institute of Science

Rehovot, Israel

ABSTRACT

My work integrated the development of a course in concurrent and distributed

computation (CDC) for computer science (CS) high school students with an

investigation of the dynamics of the knowledge evolution of students who

studied this course. CDC has the potential to serve as an effective entry point

for CS students into the practice of the academic CS world, which is the goal

of CS studies in high schools, because it bridges between technology and the

academic practice. On the one hand, it provides students with an explanation

of computerized systems in the real world, and on the other hand, it deals with

the non-deterministic nature of multi-entity systems, which require the

students to acquire professional practice, thereby gaining the perspective of

CS professionals.

The research focused on the students’ knowledge growth concerning

synchronization, which is a central topic of the course. The research

questions were as follows:

 What are the typical pieces of knowledge students construct and

append to their existing knowledge as they study the course?

 By what process does this knowledge evolve?

 How can the answers to the first two questions be utilized in order to

improve the instruction of the course?

The research consisted of two phases: the preliminary research and the main

phase of the research. The preliminary research was conducted in order to

get a feel for the area. The students were found to possess highly non-viable

pieces of knowledge regarding synchronization; the knowledge itself was

found to be tangled and interconnected. During this phase, the observed

difficulties of the students were categorized, and in addition, the students’

attitudes to the course were explored and found to be positive due to the

sense of the reality of the topics that they studied. Finally, this research

provided the initial evidence on the evolution of students’ understandings that

was reflected in their improved performance and the growth of their

conceptions.

The main phase of the research focused on the topic of synchronization using

semaphores. This phase involved (a) an exploration of the existing knowledge

of the students at the beginning of the course, (b) an exploration of the

students’ knowledge at the end of the instruction of the topic with emphasis on

incomplete pieces of knowledge, and (c) a reconstruction of the process of

evolution of these pieces of knowledge during the course.

The data was collected almost exclusively from integral in-class activities,

since any external interference would affect the process of learning. The

investigation used a diversified set of tools to obtain various perspectives on

the knowledge structures of the students. The research tools consisted of

class assignments and tests that were collected from the entire research

population. In addition, observations were made of one class during the entire

period of the instruction of the topic. Additional data collected from this class

included transcripts of videotaped laboratory problem-solving sessions, and

interviews with several students. The process was repeated in the next year in

another class. Two levels of inquiry were utilized: a macro-level view of an

entire class for the general perspective and a micro-level view of individuals

for deep inquiry of phenomena.

Although the students’ formal CS education consisted of two introductory

courses with no references to CDC, the students were found to possess

informal prior knowledge that influenced their expectations, decisions and

understanding of synchronization. Specifically, the students were found to be

members in two relevant cultures. The first is of technology users—who are

devoted to the production and manipulation of technology products and who

work out problems at the interface level, by employing trial and error in order

to get their product to “work” (Turkle, 1999). In contrast, CS education is

oriented to the academic CS community, whose interest is in the abstraction,

solution and proofs of algorithmic problems. Thus, CS formal education brings

together old-timers in two different cultures that are interested in

computations. This situation leads to a culture clash.

The second culture in which the students are members is the school culture.

Participants in this culture play didactical-games and their goals are to win

and survive these games (Broussaeu, 1997). This culture hosts the encounter

between the technology users and the academic CS culture, and therefore

crucial affects the students’ dynamics of knowledge evolution. The students,

old timers in the computer world, might judge the didactical activities offered in

CS lessons as school obligations which are irrelevant to their practice, and

accordingly would decrease their level of participation to mere survival.

The investigation of the students’ preconceptions at the beginning of the

course confirmed that the students are indeed members in these two cultures.

The influence of the culture of technology users was reflected (1) in many

students’ belief that merely plugging in communication devices automatically

resolves synchronization problems, (2) in the propensity to incorrectly use

pre-defined programming structures, and (3) in the common propensity not

the verify correctness thoroughly, but rather to rely on the results of a few

executions. The propensity of many students to knowingly simplify tasks on

the expense of the reasonableness of the solutions to synchronization

problems demonstrates the influence of this culture.

It was found that these cultures influenced the students’ judgments of

productivity and therefore determined the shape of the knowledge structures

constructed during the instruction. This insight explains the following findings:

(1) students developed a technique to solve synchronization problems using

problems previously learned at class as patterns, and (2) many students failed

in assignments where no pattern could be used, but rather required them to

explore the dynamics of programs execution (EDoE). Their failure was causes

because they had not mastered the definitions of the structures that comprise

the programs, such as semaphores, and showed no propensity to obtain this

information. The analysis of the students’ conceptual knowledge revealed that

these students possessed the coarse-grained pieces of knowledge needed for

EDoE, but that when fine-grained knowledge was needed, they (sometimes

incorrectly) borrowed explanations from similar structures studied in the past.

Thus the dynamics of knowledge evolution of these students is of a faulty

extension of past productive work habits typical to technology users.

However, the investigation showed that many students underwent a process

of enculturation, gradually crossing the boundaries from merely being

technology users toward approaching computational situations as

programmers. More specifically, it was shown that there is a continuous

interplay between the cultural aspect of knowledge and the cognitive aspect of

knowledge that drives knowledge growth. On the one hand, the students’

cultural background as technology users affects their cognitive judgment of

productivity. On the other hand, as the students gained more (cognitive)

knowledge, their judgment of productivity continuously changed, and

accordingly their approach to the assignment was extended from merely

working out the problems as users at the interface level to analyzing the code

in order to solve problems, as programmers.

CS education should be aware of the possibilities for culture clash and

address it by designing courses to be fertile zones of cultural encounters

through which students would be motivated and enabled to cross their cultural

boundaries toward the academic CS culture. Course designers should strive

for understanding the students’ web of significance, and utilize the interest of

the students in technology products to motivate their engagement in CS

practice.

