
Teaching Object Oriented Programming to Novices

Thesis for the degree Doctor of Philosophy

Submitted to the Scientific Council of the Weizmann Institute of Science

Rehovot, Israel

By: Noa Ragonis

June 2004

Abstract

This research study describes various aspects of teaching object oriented

programming (OOP) as the primary paradigm for novices. The objective of the

study was to lighting up various dimensions and provides a significant basis

for receiving answers to the questions: (1) What key concepts of object

oriented programming are important and should be included in an introductory

course in order to enable construction of a suitable knowledge model of the

paradigm, by high school novices? (2) What are the perceptions that novices

build during learning basic concepts in object oriented programming? (3)

What teaching sequence would maximized the understanding of OOP key

concepts?

The research is a constructivist qualitative study that implements the

paradigm research method on perception of object oriented programming

concepts in computer science. Extensive data collection was carried out

through the entire period: observations and field notes, audio and video

recordings, and collection of artifacts. The collected artifacts includes:

homework assignments, class work, examinations, and final project. The

various artifacts proved to be particularly fruitful if that they showed precisely

the what concepts were understood and what concepts were problematical.

The collection of data was done over two years of teaching. The study

presents a unique implementation of the constructivist qualitative research

principles in the field of analysis of findings and their presentation.

The implemented approach was “objects first” implemented in the Java

programming language and in use of the BlueJ visual development

environment. To suit this implementation, a collection of basic concepts was

chosen: class, object, attributes (fileds), methods, constructors, instantiation,

simple class and composed classes, method invocation, the object’s state and

the ways to change it, mutators and accessors. It is also important to teach

skills for using ready-made classes according to a given interface.

The guiding decision regarding the sequence of teaching concepts were: to

present from the very beginning simple and composed classes in

implementing a containment connection, avoid presenting a main program for

considerable time, emphasizing on teaching structure and conception for

object oriented programming rather than developing of algorithms. The main

research population was high school novices. In addition, a population of pre-

service teachers and in-service teachers in refresher courses was examined

too.

Following the collection of data and its analysis we found outstanding

perceptions and difficulties in four main categories. The findings are

presented in two ways: a narrative description that tells the story of the

research, and an in-depth analysis of four categories of main concepts. The

uniqueness of the study is in the detailed characterization of students’

perceptions and the attempt to point to possible reasons for difficulties and

erroneous perceptions of the students.

The four categories of concepts were: object vs. class, instantiation and

constructors, simple vs. composed classes, and program flow. In each

category we identified difficulties and perceptions. Episodes were assigned to

(one or more) category as needed. Sub-categories of concepts were created

in each category. Altogether we identified 58 different characteristics

pertaining to the four categories of concepts.

Each of the four categories of OOP concepts is presented in a separate

chapter of the thesis.

Object vs. class – Students perceptions regarding the basic relationship

between class and its’ driven objects. A class is a pattern from which objects

can be created, but conversely, to find the fields and methods of an object you

must look in the class. The sub-categories that arose in this category were:

the nature of class as a pattern (6 characteristics), connections between

object and class (5 characteristics), object creation (1 characteristics), and

identification of objects (5 characteristics).

The difficulties and perceptions that were found to be frequent in the first

phases of teaching were: “It is possible to define a method that does not

relate to any attribute,” “It is difficult to students to understand the significance

and classification of various methods”, “What is a creation of an object?”,

“Who is the object?”. During progression in practice with BlueJ the concepts

gained meaningful and most of the difficulties disappeared. Students who deal

with classes common in everyday life and their textual representations in

diagrams, “forget” that they deal with a presentation of a computerized

system. They relate to concepts and considerations of everyday life and “put

aside” the formal rules.

The perception of the object identification concept and mainly the difficulty in

“un unequivocal identification of the object entity due to multiple

presentations” is the most significant in understanding and inseparable from

the problem of “what a creation of an object is.” The causes are the attempt to

handle abstract conception on one hand, and the practice in BlueJ in which

the object has a more realistic look yet has many presentations. Another

perception that came up in this context viewed the class as “a collection of

objects.” This perception repeated also in regard to composed classes.

Despite the difficulties, it seems that the theoretical teaching using the

diagrams and the support of BlueJ visualization instills in a good enough way

the OOP core concepts. Students understand from the first month the basic

connections between the class as a pattern for object creation. They

understand the generalization – a class represents the common denominator

of entities. They understand the meaning and result of operating methods on

objects. The students further encounter new difficulties when they have to

verify their concepts comprehension, when they are needed to implement

them in the programming language.

Instantiation and constructors – Understanding the instantiation that realizes

the connection between the class and the object was vital and affected also

from the way it was defined in the programming language. The sub-categories

that arose in this category were: general understanding of the instantiation (4

characteristics), understanding the instantiation in a composed class (3

characterizations), and understanding the instantiation when it was affected

by the version of its definition in the programming language (5

characterizations).

It seems that it was not clear to the students what was taking place in the

computerized process of instantiation of simple and composed objects. The

difficulties rose despite the gradual teaching and the use of a supporting

visualized environment. I think that these stemmed from three reasons: (1) the

duality in relating to the static class and the dynamic run; (2) difficulties in

understanding the representation of class in a computerized system by

allocation fields of memory to suit its definition; (3) problems in understanding

the execution of methods and program flow.

The study describes in detail the effect of various versions of constructors

definitions in the programming language on students’ perception. According to

the results of the study in the first year, we used in the second year only a

version that used parameters to provide values object attributes, a decision

that saved a considerable amount of difficulties. In the last assignments of the

year, students showed a well formed knowledge regarding the process of

creation that was made of memory allocation and execution of the constructor

in both a simple and a composed class.

Simple class vs. composed class – Students showed difficulties in

understanding the core of object oriented programming – implementing of the

connection between different classes. In this study the concept “simple class”

relates to a class whose attributes are of built-in types in the language, and

the concept “composed class” relates to a class that has attributes of a

different user class type. The sub-categories that arrose up in this category

were: understanding encapsulation (7 characteristics), understanding the

modularity (3 characteristics), class is a collection of objects (3

characteristics), understanding the “black box” (one characteristic),

personification (one characterization) and understanding a self method (one

characteristic).

The main difficulty that was found was in understanding the encapsulation

principle. Yet, the seven perceptions in this category occurred only up to the

middle of the school year and disappeared with the advancement of studies.

The perceptions indicated a difficulty in basic understanding that an object

constituted one entity that included all its attributes and since it was attached

to a particular class one could activate on it the methods defined in its’ class.

The significant perception that did not disappear was the perception that

“there is no need for mutators and accessor when using values of attributes of

a simple class type.” This evidence raised the question whether to instruct

students to include in each case mutators and accessors to each attribute, or

only where needed, and when to integrate these methods in the process of

learning.

The erroneous perceptions in the subject of modularity appear especially in

regard activation of methods in the context of developing a particular

algorithm, and do not point to a meaningful difficulty in the division of the

problem domain into entities. Erroneous attachment of methods between the

simple class and the composed class appeared only in the beginning of

learning. Later the distinction between them was very clear. The problem in

the core of modularity is “no use of methods that were defined in the simple

class to attainment of a goal in the composed class”, however, this difficulty

was not very common. Another perception that disturbed some of the

students was in the context of realization of the methods: “How the distinction

between methods with an identical name does in executed?” I assume that a

teaching approach that would combine teaching of the main method up front,

would enable students to view the activation of a method on a simple class

object and on a composed class object, and could provide them an answer

that the executed method is the one that is defined in the appropriate class.

The perceptions that indicated viewing of the composed class as a collection

of simple class objects appeared only in the first half of the school year and

completely disappeared afterwards. The use of composed classes in which a

detail from the attributes of the simple class appear side by side with

attributes from built-in types can prevent these erroneous perceptions.

Difficulties in understanding “self method” (a method invocation that appears

in the body of another method) appeared only after a composed class was

defined. Students were exposed to the way of activating a method on an

object, from which they had made an erroneous generalization that method

invocation had to always be related to on an explicit object. Here, too, earlier

exposure to a project that includes a main class would have shown how the

composed object was created and would enable easier understanding of the

correct place and structure of activating a method on the composed class.

Program flow – Students find it hard to create a general picture of the

execution of a program that solves a certain problem. We included this

category because we found that the students asking numerous questions of

the form: What actions are carried out? When are they carried out? What

triggers the action? What is the order of execution of actions? The sub-

categories that arose were in the topics of: Understanding executions of

methods (5 characteristics), understanding of data flow (2 characteristics),

students who thought that some things just happened with no cause (3

characteristics), students wondered: “how does the computer know?” (2

characteristics) and in general did not understand the overall control over

execution – “what happens and when?”

The difficulties and the perceptions in the subject of methods invocation

repeatedly raise the difficulty that some of the students have in understanding

the difference between defining a class and executing methods from within its’

definition – the static/dynamic dimension. This problem becomes even more

acute in understanding of the program flow as was demonstrated in the

perceptions that: “Methods are executed by the order of their appearance in

the class,” or “It is possible to activate one method only once.” A better

understanding of the class as a pattern for creating objects and the methods

that are defined in it as a collection that can be use according to need, would

have prevented this un clear encounter with concepts in the context of

program flow.

The research conclusions chapter in the thesis integrates the results of all

chapters. The conclusions of the research are presented in the following

categories: (i) a summary of the conceptions held by the students and their

difficulties, (ii) a summary of the recommendations for teaching, (iii) a

suggestion for a syllabus for teaching OOP to novices that takes into account

the these recommendations, (iv) an explanation of the unique contribution of

the research and recommendations for further research.

From examination of students understanding at the end of the teaching

process we could see that the basic concepts were understood as well as the

principles of object oriented programming we emphasized like encapsulation,

modularity and data hiding. In the summarizing questionnaire all the students

explained properly the objective of instantiation, explained the process

involved in its activation and also implemented the creation of a new

composed object in Java. They also demonstrated almost perfectly

classification of new methods to the appropriate class. Their explanations

used the appropriate OOP terms. Students also demonstrated understanding

of program flow through description, analysis and expansion of the main

method defined in the project, including a detailed description of the process

scenario as a result of carrying out the “main” method. In the standpoint

questionnaire that they filled before carrying out the final project, we could see

that most of the concepts were no longer difficult for them. Three concepts

were shown to be more difficult in a significant way: a composed class, main

program and the mutators and accessors methods.

The success in the development of the final personal projects, measured by

criteria of OOP principles, was very high.

This study shows that it is possible to teach object oriented programming to

high school novices in Java. The success of the students in planning and

implementing a final project, as did other findings, confirms it. From the study

we learn that there is great importance to the order in which concepts are

presented, for building a proper model of knowledge about the basic concepts

in the field. The great number of perceptions and difficulties described does

not mean that teaching object oriented programming is unsuitable to novices.

Most of the perceptions came up in low frequency, including perceptions that

appeared only once. Also many of the perceptions characterized a particular

period of learning and disappeared with the advancement of learning.

Awareness of curricula developers and teachers’, regarding the multitude of

perceptions and students’ difficulties found here could be used in building

curricula that enable fruitfully process of teaching and learning.

